

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FPGA IMPLEMENTATION OF ROBUST SYMMETRICAL
NUMBER SYSTEM IN HIGH-SPEED FOLDING ANALOG-TO-

DIGITAL CONVERTERS

by

Han Wei Lim

December 2010

 Thesis Advisor: Phillip E. Pace
 Second Reader: David C. Jenn

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
FPGA Implementation of Robust Symmetrical Number System in High-Speed
Folding Analog-to-Digital Converters

6. AUTHOR(S) Han Wei Lim

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Joint Services Electronic Warfare
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research, code 31, Washington D.C.

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol number __N.A.__.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor and communication systems today.
As the need for ADCs with faster conversion speeds and lower power dissipation increases, there is a growing
motivation to reduce the number of power-consuming components by employing folding circuits to fold the input
analog signal symmetrically, prior to quantization by high-speed comparators. These properties of low-power
consumption, compactness, high-resolution and fast conversion speeds make folding ADCs an attractive concept to be
used for defense applications, such as unmanned systems, direction-finding antenna architectures and system-on-a-
chip applications.

In this thesis, a prototype of an optical folding ADC was implemented using the Robust Symmetrical
Number System (RSNS). The architecture employs a three-modulus (Moduli 7, 8, 9) scheme to preprocess the
antenna signal.

This thesis focuses on the simulation and hardware implementation of this ADC architecture, including the
bank of comparators and the RSNS-to-Binary Conversion within a Field Programmable Gate Array (FPGA), to
achieve an eight-bit Dynamic Range of 133. This is then integrated with the front-end photonics implementation
(designed under a separate thesis).

Low frequency analyses of the results using a 1-kHz input signal indicate a 5.39 Effective Number of Bits
(ENOB), a Signal-to-Noise Ratio plus Distortion (SINAD) of 34.21 dB, and a Total Harmonic Distortion (THD) of –
61.68 dB.

15. NUMBER OF
PAGES

129

14. SUBJECT TERMS
Analog-to-Digital Converter (ADC), Robust Symmetrical Number System (RSNS), Gray-
Code Properties, FPGA

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FPGA IMPLEMENTATION OF ROBUST SYMMETRICAL NUMBER SYSTEM
IN HIGH-SPEED FOLDING ANALOG-TO-DIGITAL CONVERTERS

Han Wei Lim
Lieutenant Commander, Republic of Singapore Navy

B.E., University of New South Wales, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: Han Wei Lim

Approved by: Phillip E. Pace
Thesis Advisor

David C. Jenn
Second Reader

R. Clark Robertson
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor and

communication systems today. As the need for ADCs with faster conversion speeds and

lower power dissipation increases, there is a growing motivation to reduce the number of

power-consuming components by employing folding circuits to fold the input analog

signal symmetrically prior to quantization by high-speed comparators. These properties

of low-power consumption, compactness, high-resolution and fast conversion speeds

make folding ADCs an attractive concept to be used for defense applications, such as

unmanned systems, direction-finding antenna architectures and system-on-a-chip

applications.

 In this thesis, a prototype of an optical folding ADC was implemented using the

Robust Symmetrical Number System (RSNS). The architecture employs a three-modulus

(Moduli 7, 8, 9) scheme to preprocess the antenna signal.

This thesis focuses on the simulation and hardware implementation of this ADC

architecture, including the bank of comparators and the RSNS-to-Binary Conversion

within a Field Programmable Gate Array (FPGA), to achieve an eight-bit dynamic range

of 133. This is then integrated with the front-end photonics implementation (designed

under a separate thesis).

Low frequency analyses of the results using a 1-kHz input signal indicate a 5.39

Effective Number of Bits (ENOB), a Signal-to-Noise Ratio plus Distortion (SINAD) of

34.21 dB, and a Total Harmonic Distortion (THD) of -61.68 dB.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. FOLDING-TYPE ANALOG-TO-DIGITAL CONVERTERS....................1
B. SUMMARY OF RECENT RESEARCH...1
C. PRINCIPAL CONTRIBUTIONS ..3
D. THESIS OUTLINE..3

II. ROBUST SYMMETRICAL NUMBER SYSTEM...5
A. RSNS STRUCTURE..5

1. Dynamic Range ..7
2. Ambiguity Types ..7
3. Sub-Channel Analysis..8
4. Even-Odd Analysis...11

B. RSNS DYNAMIC RANGE SEARCH ALGORITHM...............................13
1. Dynamic Range Upper Bound ..13
2. RSNS Vector Ambiguity Locations..13
3. Minimal Ambiguity Pair Locations..16
4. Consecutive Minimal Pair Locations ...17

C. RSNS-TO-BINARY CONVERSION ALGORITHM19
1. RSNS-RNS Relationship ...19
2. Dynamic Range Compression...20
3. Alignment of RNS Least Positive Solution23

III. RSNS-TO-BINARY CONVERSION...25
A. LOGIC BLOCK DIAGRAM OF RSNS-TO-BINARY CONVERTER ...25
B. POSITION BIT CONVERSION..27

1. RSNS Thermometer Code to RNS Residue/Position Bit
Conversion..27

2. Position Bit Equations ...33
C. EVEN RESIDUE AND SUB-CHANNEL FLAGS35

1. Even Residue Flags ..35
2. Sub-Channel Flags ...35

D. CONDITIONAL BIT REVERSAL..36
E. LEAST POSITIVE SOLUTION ALIGNMENT ..37

1. Full Dynamic Range With LPS Priority..38
2. Truncated Dynamic Range ...38

F. ENCODER..40
G. ADDER ...40

IV. LABVIEW IMPLEMENTATION OF RSNS-TO-BINARY CONVERSION.....43
A. LABVIEW SCHEMATICS OF RSNS-TO-BINARY CONVERTER......43
B. POSITION BIT CONVERSION AND EVEN RESIDUE/SUB-

CHANNEL FLAGS ...44
1. Channel 1 ..44
2. Channel 2 ..46

 viii

3. Channel 3 ..47
4. Sub-Channel Flags ...48

C. CONDITIONAL BIT REVERSAL..49
1. Channel 2 Reversal ..50
2. Channel 3 Reversal ..50

D. ALIGNMENT LOGIC ..51
E. ENCODER..53

1. Truncated Dynamic Range ...54
2. Full Dynamic Range ..55

F. ADDER ...57

V. SIMULATION OF RSNS-TO-BINARY CONVERSION59
A. LABVIEW THERMOMETER CODE GENERATORS...........................59

1. Channel 1 ..59
2. Channel 2 ..62
3. Channel 3 ..65

B. SIMULATION MODEL ...69
C. SIMULATION RESULTS ..70

1. Truncated Dynamic Range ...70
2. Full Dynamic Range ..71
3. LPS Priority Circuit ..71
4. Full Dynamic Range with LPS Priority Circuit..............................73

VI. ADC INTEGRATION...75
A. DIGITAL DECODING SUB-SYSTEM...75
B. COMPARATORS..76

1. Channel 1 ..76
2. Channel 2 ..77
3. Channel 3 ..78

C. FPGA IMPLEMENTATION ...79
1. FPGA VI ...80
2. Host Interface VI..82
3. Results ...82

VII. ADC PERFORMANCE ..85
A. LINEARITY ERRORS ...85

1. ADC Resolution..87
2. Differential Non-Linearity ..87
3. Integral Non-Linearity ..87

B. NOISE FLOOR ANALYSIS...89
1. Quantization Noise...89
2. Clock Jitter ...91

C. DYNAMIC PERFORMANCE ANALYSIS..92
1. Signal-to-Noise Ratio ...92
2. Total Harmonic Distortion..92
3. SNR Plus Distortion...92
4. Effective Number of Bits ...92

 ix

5. Summary of ADC Dynamic Performance Parameters93
D. SUMMARY ..93

VIII. CONCLUSION ..95
A. KEY CONCLUSIONS ..95
B. RECOMMENDATIONS FOR FUTURE RESEARCH.............................96

1. Bandwidth Upgrade...96
2. FPGA Upgrade...96
3. Higher-Moduli Configurations ...97

APPENDIX. GENERALIZED CHINESE REMAINDER THEOREM
PROCEDURE TO SOLVE FOR COA SHIFTS ..99

LIST OF REFERENCES..103

INITIAL DISTRIBUTION LIST ...105

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Block Diagram of a Three-Channel Folding ADC Architecture (After [3]).2
Figure 2. Three-Channel RSNS for Moduli [7 8 9]im 6

Figure 3. Folded RSNS Waveforms for Moduli [7 8 9]im  ..6

Figure 4. Single Channel Ambiguity Types (m1 = 7)..8
Figure 5. Decimation of Channels into Sub-Channels for Moduli [7 8 9]im 9

Figure 6. RSNS Vectors for Sub-Channels 0, 1 and 2. ...9
Figure 7. Plot of Sub-Channels 0, 1 and 2...10
Figure 8. Even-Odd Structure of RSNS Vectors for Sub-Channels 0, 1 and 2...............12
Figure 9. Overall Even-Odd Structure of RSNS Vectors..12
Figure 10. RSNS Vector Ambiguity Locations (Three-Channel Case).14
Figure 11. RSNS Vector Ambiguity Locations (for Moduli 7, 8 and 9)...........................16
Figure 12. Minimal Pair Locations..17
Figure 13. Consecutive Minimal Pair Locations...18
Figure 14. One-to-One Correspondence between RSNS and RNS Vectors.19
Figure 15. RSNS and RNS Vectors for Even Index g...20
Figure 16. RNS Vectors Spanning DR (Before and After Shifting Start Position).22
Figure 17. RSNS-to-Binary Conversion Algorithm (After [2]).24
Figure 18. Logic Block Diagram of RSNS-to-Binary Converter (After [4]).25
Figure 19. RSNS Thermometer Codes for [7 8 9]im  . ..26

Figure 20. Channel 1 RSNS-to-RNS Conversion for all Sub-Channels (After [2]).27
Figure 21. Channel 1 RSNS-RNS-Position Bit Correspondences for all Sub-Channels

(After [2])...28
Figure 22. Channel 2 RSNS-to-RNS Conversion for Sub-Channels 0 and 1 (After

[2])..29
Figure 23. Channel 2 RSNS-RNS-Position Bit Correspondences for Sub-Channels 0

and 1 (After [2]). ..29
Figure 24. Channel 2 RSNS-to-RNS Conversion for Sub-Channel 2 (After [2]).30
Figure 25. Channel 2 RSNS-RNS-Position Bit Correspondences for Sub-Channel 2

(After [2])...30
Figure 26. Channel 3 RSNS-to-RNS Conversion for Sub-Channel 0 (After [2]).31
Figure 27. Channel 3 RSNS-RNS-Position Bit Correspondences for Sub-Channel 0

(After [2])...31
Figure 28. Channel 3 RSNS-to-RNS Conversion for Sub-Channels 1 and 2 (After

[2])..32
Figure 29. Channel 3 RSNS-RNS-Position Bit Correspondences for Sub-Channels 1

and 2 (After [2]). ..32
Figure 30. LPS Alignment using Position Bits. ..37
Figure 31. Adder Function for Implementing Multiplication by Three (After [2]).41
Figure 32. Single Adder for Converting LPS to Binary (After [2]).41
Figure 33. Overall LabVIEW Schematics of RSNS-to-Binary Converter........................44
Figure 34. LabVIEW Schematics of Channel 1 Position Bit and Even Residue Flag.45

 xii

Figure 35. LabVIEW Schematics of Channel 2 Position Bit and Even Residue Flag.46
Figure 36. LabVIEW Schematics of Channel 3 Position Bit and Even Residue Flag.48
Figure 37. Sub-Channel 0 Flag..48
Figure 38. Sub-Channel 2 Flag..49
Figure 39. 2-to-1 Multiplexer (After [4]). ...49
Figure 40. LabVIEW Schematics of Channel 2 Conditional Bit Reversal.50
Figure 41. LabVIEW Schematics of Channel 3 Conditional Bit Reversal.51
Figure 42. LabVIEW Schematics of Alignment Logic (Full DR).52
Figure 43. LabVIEW Schematics of Encoder (Truncated DR)...55
Figure 44. LabVIEW Schematics of Encoder (Full DR). ...56
Figure 45. LabVIEW Schematics of Adder. ...57
Figure 46. Channel 1 Logic Minimization of Table 3 (After [4]).60
Figure 47. LabVIEW Channel 1 Thermometer Code Generator.61
Figure 48. Channel 2 Logic Minimization of Table 4 (After [4]).63
Figure 49. LabVIEW Channel 2 Thermometer Code Generator.64
Figure 50. Channel 3 Logic Minimization of Table 5 (After [4]).66
Figure 51. LabVIEW Channel 3 Thermometer Code Generator.68
Figure 52. LabVIEW Simulation of RSNS-to-Binary Conversion...................................69
Figure 53. Simulated RSNS-to-Binary Output (Truncated DR Case).70
Figure 54. Simulated RSNS-to-Binary Output (Full DR Case with Ambiguities).71
Figure 55. LabVIEW Schematics of Encoder with LPS Priority Circuit..........................72
Figure 56. Simulated RSNS-to-Binary Output (Full DR Case with No Ambiguities).73
Figure 57. DDS Module Setup. ...75
Figure 58. LabVIEW Schematics of Channel 1 Comparators. ...77
Figure 59. LabVIEW Schematics of Channel 2 Comparators. ...78
Figure 60. LabVIEW Schematics of Channel 3 Comparators. ...79
Figure 61. LabVIEW FPGA Project Overview...80
Figure 62. LabVIEW Schematics of FPGA VI...81
Figure 63. LabVIEW Schematics of Host VI..82
Figure 64. DDS Output for a 1-kHz Triangular Input Signal. ..83
Figure 65. DDS Output for a 1-kHz Sine Input Signal. ..83
Figure 66. Comparison of PES Input Signal and DDS Output Signal.85
Figure 67. Photonic ADC Transfer Function using a 1-kHz Triangular Input Signal.86
Figure 68. Quantization Errors..86
Figure 69. Linearity Parameters – Step-Size, DNL and INL. ...88
Figure 70. Process for Examining ADC Noise Floor (From [10])....................................89
Figure 71. Spectral Average of a 1-kHz Sinusoidal Signal...90
Figure 72. Spectral Average of a 2-kHz Sinusoidal Signal...91
Figure 73. Upgrades to DDS Setup. ..97

 xiii

LIST OF TABLES

Table 1. List of Variables...xx
Table 2. Encoder Logic Table..53
Table 3. Channel 1 (1 7m ) Logic Table..60

Table 4. Channel 2 (2 8m ) Logic Table..62

Table 5. Channel 3 (3 9m ) Logic Table..65

Table 6. Comparison of Dynamic Range...73
Table 7. ADC Dynamic Performance Parameters. ..93

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor and

communication systems today. As the need for ADCs with faster conversion speeds and

lower power dissipation increases, there is a growing motivation to reduce the number of

power-consuming components by employing folding circuits to fold the input analog

signal symmetrically prior to quantization by high-speed comparators. The folding of the

analog signal allows comparators to be repetitively used, resulting in a smaller die area

and lower power consumption.

These properties of low-power consumption, compactness, high-resolution and

fast conversion speeds make folding ADCs an attractive concept to be used for defense

applications that involve power and size constraints as key factors in the design of

battlefield systems and sensors.

In this thesis, a prototype of an optical folding ADC was implemented using the

Robust Symmetrical Number System (RSNS), which minimizes the number of

comparators and removes the interpolation circuitry completely. The architecture

employs a three-modulus (Moduli 7, 8, 9) scheme to preprocess the antenna signal and is

shown in Figure 1.

Figure 1. Block Diagram of a Three-Channel Folding ADC Architecture.

 xvi

The goal of this thesis is to conduct hardware and software implementation of the

Digital Decoding Sub-System (DDS) module of the folding ADC architecture (for

Moduli 7, 8, 9), from the bank of comparators to the RSNS-to-binary conversion within

the Field Programmable Gate Array (FPGA), as well as integration with the front-end

Photonics Encoding Sub-System (PES) module of this ADC design. This was

accomplished via several milestones described below.

Firstly, the RSNS Dynamic Range (DR) Computation algorithm was verified to

be correct, proving that an eight-bit DR of 133 can be achieved theoretically for a three-

channel RSNS ADC with Moduli m1 = 7, m2 = 8 and m3 = 9.

Secondly, the RSNS-to-binary conversion algorithm for a three-channel RSNS

ADC with Moduli m1 = 7, m2 = 8 and m3 = 9 was developed in LabVIEW, shown in

Figure 2.

Figure 2. LabVIEW Schematics of RSNS-to-Binary Converter.

 xvii

This conversion was done to convert the RSNS output into a more convenient

decimal representation. This implementation was shown to achieve the DR value of 133

with no ambiguities, which is in agreement with the RSNS DR Computation algorithm,

and a one-bit improvement over that achieved in a previous design. Design of

thermometer code generator circuits and simulation of this algorithm were carried out to

verify that it is working properly before connecting to actual signals.

Thirdly, the comparator circuits and RSNS-to-binary conversion algorithm were

designed and implemented on the FPGA to form the DDS module, shown in Figure 3.

Figure 3. DDS Module Setup

The comparator speed was a limiting factor to the ADC system speed as actual

comparator ICs were used for sampling outside the FPGA in a previous design. The key

improvement made to the DDS module setup in Figure 3 is that the comparator circuits

now reside in the FPGA, allowing them to sample at a rate equal to the FPGA speed.

 xviii

The comparator circuit and RSNS-to-binary conversion logics were also ran on

the FPGA to guarantee a higher FPGA execution speed, as opposed to running it on a

National Instruments Real-Time Controller module with a lower processing speed. These

two factors allow the ADC to achieve an overall higher sampling frequency.

Lastly, the DDS module was integrated with the front-end PES module to form a

folding ADC system and characterization of the ADC performance was carried out.

Analysis of the results attributed the dominant noise source in the ADC system to

quantization noise, with the ADC remaining resilient to errors caused by other additive

noise sources and comparator sampling.

This electro-optic RSNS ADC system has been demonstrated to work and

produces an eight-bit output with relatively simple hardware and software. Due to the

reduced number of hardware and software components, the energy and size savings make

this folding ADC design appealing for defense applications, such as unmanned systems,

direction-finding antenna architectures and electronic warfare system-on-a-chip

applications.

 xix

LIST OF ACRONYMS AND ABBREVIATIONS

ADC Analog to Digital Converter

ASIC Application Specific Integrated Circuit

CRIO Compact Reconfigurable Input/Output

CRT Chinese Remainder Theorem

DDS Digital Decoding Sub-System

DMA Dynamic Memory Allocation

DNL Differential Non-Linearity

DR Dynamic Range

ENOB Effective Number of Bits

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

IC Integrated Circuit

INL Integral Non-Linearity

I/O Input/Output

LPS Least Positive Solution

LSB Least Significant Bit

NI National Instruments

PES Photonics Encoding Sub-System

PRP Pair-Wise Relatively Prime

RNS Residue Number System

RSNS Robust Symmetrical Number System

RTC Real-Time Controller

 xx

SC Sub-Channel

SINAD Signal-to-Noise Ratio plus Distortion

SNR Signal-to-Noise Ratio

THD Total Harmonics Distortion

VI Virtual Instrument

M̂ Longest series of consecutive non-ambiguous RSNS vectors

fP Fundamental period

gXR Vector of RNS residues at position g

hX Vector of RSNS residues at position h

Table 1. List of Variables.

Variable Description Subscript i Subscript k

ig Encoder Output Bit Order

ih Adder Output Bit Order

iki RNS States Channel Number Bit Order

im Modulus Channel Number

in Alignment Logic Output / LPS Solution
Bit Order /

Gate Number

ikp Position Bit Channel Number Bit Order

iks Thermometer Code / RSNS States Channel Number Bit Order

it Shift Value Channel Number

 xxi

ACKNOWLEDGMENTS

Firstly, I will like to express my gratitude to Singapore’s Ministry of Defence and the

Republic of Singapore Navy for providing me the opportunity to further my post-

graduate education at the Naval Postgraduate School (NPS). NPS is definitely a unique

institution to be in, and a melting pot that brings together multiple disciplines and

cultures.

It has been my great pleasure and honor to work with Professor Phillip E. Pace

and Dr. Brian Luke, who are renowned experts in this field. I will like to express my

appreciation for their guidance, tutelage and support during this one-year journey.

I am deeply grateful to Dr James Calusdian, Lab Director of the Photonics Lab,

who provided invaluable advice and technical expertise in the realms of FPGA

programming. James assisted me in overcoming numerous problems and provided

practical suggestions on the next steps towards making the project work. His enthusiasm

and resourcefulness provided me with the confidence to complete this project

successfully.

I will like to express my most sincere thanks to Kee Leong, my partner-in-crime

for this project, and Yean Wee for their numerous brain-storming and helps along the

way.

Lastly, I will like to thank my lovely wife, who has graciously endured the

lengthy periods when I am away working on this thesis, and for taking good care of me

all this while. I will also like to thank my parents and siblings for the support that they

have shown me throughout my life, without which I would not be where I am today.

I dedicate this thesis to my first child, wh will be arriving into this world in March

2011.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. FOLDING-TYPE ANALOG-TO-DIGITAL CONVERTERS

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor

and communication systems today. They allow analog data measured in the real world to

be sampled and converted into quantized levels for high-speed digital processing.

As the need for ADCs with faster conversion speeds and lower power dissipation

increases, there is a growing motivation to reduce the number of power-consuming

components by employing folding circuits to fold the input analog signal symmetrically,

prior to quantization by high-speed comparators. [1]

The folding of the analog signal allows comparators to be repetitively used,

resulting in a smaller die area and lower power consumption. One folding technique

employed is the Robust Symmetrical Number System (RSNS), which minimizes the

number of comparators and removes the interpolation circuitry completely. [1]

 These properties of low-power consumption, compactness, high-resolution and

fast conversion speeds make folding ADCs an attractive concept to be used for defense

applications, such as unmanned systems, direction-finding antenna architectures and

electronic warfare system-on-a-chip applications.

B. SUMMARY OF RECENT RESEARCH

It was demonstrated in [2] that a three-channel folding ADC of Moduli 3, 4 and 5

can be designed using an efficient pipelined RSNS-to-binary algorithm to produce a six-

bit Dynamic Range (DR) of 43 while utilizing significantly less electronic components

than other equivalent six-bit ADC architecture designs. The implementation of this ADC

architecture was verified to have the same DR in [3], shown in Figure 1.

 2

Figure 1. Block Diagram of a Three-Channel Folding ADC Architecture (After [3]).

In [4], it was demonstrated that the same algorithm can be extended and applied

to a folding ADC of higher moduli (Moduli 7, 8 and 9). A seven-bit DR of 126 was

achieved in [4], but the full DR of 133 could not be achieved due to ambiguities in the

ADC output. The next step is to solve for the ambiguities and carry out an

implementation of this ADC design.

This thesis is done in conjunction with another Master’s thesis to implement a

three-channel electro-optical folding ADC architecture (for Moduli 7, 8, 9) [5]. It focuses

on the implementation of the Digital Decoding Sub-System (DDS), which involves the

hardware and software implementation of the bank of comparators to the RSNS-to-binary

conversion within a Field Programmable Gate Array (FPGA), to achieve an eight-bit DR

of 133.

 3

This is done using a novel solution to solve for the ambiguities in the ADC output. The

DDS module is then integrated with the front-end Photonics Encoding Sub-System

(PES), which is detailed in [5].

C. PRINCIPAL CONTRIBUTIONS

Given the works summarized in the previous section, the principal contributions

of the research in this thesis are three-fold.

Firstly, this thesis provides a derivation of the theoretical DR and its start and end

positions for a folding ADC of Moduli 7, 8 and 9. This is based on the RSNS dynamic

range computation algorithm in [6] and [7] and is used as a yardstick comparison to

verify with actual experimental values obtained.

The second contribution is the implementation of the RSNS-to-binary algorithm

in LabVIEW to achieve an eight-bit DR of 133, which is a one-bit improvement over that

achieved in [4]. Simulation of this algorithm is carried out to verify that it is working

properly before connecting to actual signals. This is done by designing test circuits to

produce the three-channel thermometer codes, which are then supplied to the algorithm to

obtain the simulated DR and its position.

Thirdly, this thesis documents the DDS implementation of the comparator circuit

design and RSNS-to-binary conversion algorithm onboard a National Instruments (NI)

FPGA so as to achieve a higher sampling frequency. The comparator circuit is redesigned

in LabVIEW to allow it to achieve a higher speed to match that of the FPGA, as opposed

to using actual comparator Integrated Circuits (ICs) as in [3]. The DDS module is then

integrated with the front-end PES module in [5] to form an overall folding ADC

architecture and tested. Lastly, an analysis and characterization of the ADC performance

is carried out.

D. THESIS OUTLINE

Having covered the recent research efforts for a folding ADC architecture, we

will provide the reader with a summary of the RSNS structure and principles behind the

RSNS-to-binary conversion algorithm in Chapter II. A good understanding of these two

 4

areas is required in order to translate these into actual hardware and software

implementation. A theoretical derivation of the DR and its start and end positions for a

folding ADC of Moduli 7, 8 and 9, based on the RSNS dynamic range computation

algorithm in [6] and [7] is also provided in Chapter II.

All the logic blocks and their equivalent Boolean equations required to form the

RSNS-to-binary converter for an ADC of Moduli 7, 8, 9 are delineated in Chapter III.

The process to convert the Boolean equations in Chapter III into a suitable form

for implementation in LabVIEW is outlined in Chapter III. It describes how each logic

block is designed in LabVIEW and the integration of all logic blocks to form the RSNS-

to-binary converter.

The simulation and testing of the RSNS-to-binary converter to verify that the

conversion logic is functioning properly is delineated in Chapter V. The first section of

this chapter describes the creation of thermometer codes for each channel in LabVIEW to

simulate as inputs to the conversion algorithm. The second section highlights the key

simulation results obtained for various models.

The process of implementing the comparator circuit design and RSNS-to-binary

conversion algorithm on a NI FPGA module is detailed in Chapter VI. It also highlights

the integration of the DDS module with the front-end PES module in [5] to form an

overall folding ADC architecture are also highlighted.

An analysis of the results to characterize the performance of this ADC system is

provided in Chapter VII.

The key conclusions obtained from this project and recommendations for future

research are given in Chapter VIII.

 5

II. ROBUST SYMMETRICAL NUMBER SYSTEM

The basic theory and structure of the RSNS, and how its properties are used in the

implementation of the RSNS-to-binary converter, is explained in this chapter.

Equation Section (Next)

A. RSNS STRUCTURE

A single-channel RSNS is based on the following staircase sequence [1]:

[0,1, 2,... 1, , 1,..., 2,1]h i i iX m m m   Equation Section (Next) (1)

This sequence starts from zero and increases to a peak value mi, which is the channel

modulus. It then decreases back to zero and repeats itself, forming a periodic sequence

with a period of 2mi.

A three-channel RSNS vector is denoted as:

1

2

3

h

s

X s

s

 
   
  

, (2)

where the RSNS residues are in the range

 
 
 

1 1

2 2

3 3

0, 1, , ,

0, 1, , ,

0, 1, , .

s m

s m

s m













 (3)

For an N-channel RSNS, each number in the sequence is repeated N times,

extending the sequence period to 2Nmi. Each RSNS channel modulus is required to be

pair-wise relatively prime (PRP) to all other channel moduli [1].

The three-channel RSNS case (N = 3), with channel moduli m1 = 7, m2 = 8 and m3

= 9, which meets the PRP condition, is focused on in this thesis. Each channel period is

of length 2Nmi. The first 49 RSNS vectors of the three-channel RSNS structure for the

moduli [7 8 9]im  are shown in Figure 2 as an illustration.

 6

(m 1 = 7) 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 6

(m 2 = 8) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8

(m 3 = 9) 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(m 1 = 7) 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 1 1 1 2 …

(m 2 = 8) 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 …

(m 3 = 9) 9 9 9 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 …

h 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 …

X h

X h

Figure 2. Three-Channel RSNS for Moduli [7 8 9]im  .

A plot of the folded RSNS waveforms for the three channels in Figure 2, as well

as the relative left-shift for Channels 2 and 3, is shown in Figure 3. Notice that these

relative shifts are required for the system to exhibit Gray-code properties, where the

residues within consecutive RSNS vectors change one at a time at the next code position.

This property makes it attractive for error control [1].

Figure 3. Folded RSNS Waveforms for Moduli [7 8 9]im  .

 7

The fundamental period of a three-channel RSNS is [1]:

1 2 32 2f iP N m Nm m m  (4)

This is calculated to be      2 3 7 8 9 3024fP   for a RSNS with [7 8 9]im  .

1. Dynamic Range

The maximum DR of the RSNS is defined as the longest series of consecutive

unambiguous RSNS vectors within the fundamental period of the system [1]. The DR for

the same RSNS system is given by [1]:

� 2
1 1

3 15
7.

2 2
M m m   (5)

This is calculated as �    23 15
7 7 7 133

2 2
M     .

It was shown that the size of the DR in a RSNS is the same regardless of the shift

sequence and whether the shift is to the left or right. However, the location of the DR is

affected by the choice of the channels that receive the shifts [1].

Since the aim is to achieve an eight-bit DR for this design regardless of its

location, a left-shift [0 1 2]it  system is chosen for ease of implementation as the

RSNS-to-binary conversion algorithm is derived based on this shift system in [2], with

Channel 2 and 3 shifted one and two positions to the left, respectively, both relative to

Channel 1.

2. Ambiguity Types

The conventional approach towards finding the DR and its position is to search

the entire fundamental period for a sequence of non-repeating or unambiguous vectors of

unknown length, which is computationally-intensive. A more efficient approach is to

compute the finite locations of the ambiguous RSNS vectors for each channel and solve

for all vector ambiguity locations to obtain the DR and its position [2], which will be

elaborated in Section B of this chapter.

 8

Three types of ambiguities exist in each RSNS channel [2]. The positions of the

three ambiguity types for the Channel 1 (m1 = 7) case are illustrated in Figure 4. Type 0

ambiguities occur for every repeating channel period, while Type 1 ambiguities occur on

the rise and fall of a channel period. In addition, Type 2 ambiguities occur every time

each residue value is repeated three times within the period.

Figure 4. Single Channel Ambiguity Types (m1 = 7).

3. Sub-Channel Analysis

It was shown in [2] that decimating each of the three channels into their sub-

channels aids in the solving of channel ambiguities. This is illustrated for

the [7 8 9]im  case in Figure 5.

Grouping each of the sub-channels together, and re-indexing the position index h to

a new index g, we obtain the results in Figure 6. The relationship between the old

position index h and the new index g is given by [2]:

 

 

 (Sub-Channel 0)
3

1
 (Sub-Channel 1)

3
2

(Sub-Channel 2)
3

h
g

h
g

h
g









 (6)

 9

m 1=7 X h 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

Sub-Channel 0 0 1 2 3 4 5

Sub-Channel 1 0 1 2 3 4 5

Sub-Channel 2 0 1 2 3 4 5
Position Index h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 2=8 X h 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6

Sub-Channel 0 0 1 2 3 4 5
Sub-Channel 1 0 1 2 3 4 5
Sub-Channel 2 1 2 3 4 5 6
Position Index h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 3=9 X h 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6

Sub-Channel 0 0 1 2 3 4 5
Sub-Channel 1 1 2 3 4 5 6
Sub-Channel 2 1 2 3 4 5 6
Position Index h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 5. Decimation of Channels into Sub-Channels for Moduli [7 8 9]im  .

m 1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

m 2=8 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1

m 3=9 0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

h 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
g = h /3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

m 2=8 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1

m 3=9 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 0

h 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
g = (h -1)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

m 2=8 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2

m 3=9 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 0

h 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53
g = (h -2)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Position Index

Sub-Channel 0

Sub-Channel 1

Sub-Channel 2

X h

X h

X h

Position Index

Position Index

Figure 6. RSNS Vectors for Sub-Channels 0, 1 and 2.

 10

A plot of the RSNS sub-channel waveforms in Figure 6 is shown in Figure 7.

Each channel has N = 3 sub-channels. From Figure 7, it can be seen that Type 2

ambiguities are eliminated, leaving only Type 0 and 1 ambiguities.

Figure 7. Plot of Sub-Channels 0, 1 and 2.

As the waveforms are folded and symmetric, each residue value occurs twice in a

single folding period, except for the minimum and the maximum value, which occur only

once. Using this fact, we obtain the congruence equations describing the position of a

RSNS residue vector for Sub-Channel 0 as [2]:

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

(mod 2) or 2 (mod 2),

(mod 2) or 2 (mod 2),

(mod 2) or 2 (mod 2).

g s m g m s m

g s m g m s m

g s m g m s m

  
  
  

 (7)

 11

The congruence equations for Sub-Channel 1 are:

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

(mod 2) or 2 (mod 2),

(mod 2) or 2 (mod 2),

1 (mod 2) or 2 1 (mod 2).

g s m g m s m

g s m g m s m

g s m g m s m

  
  
    

 (8)

The congruence equations for Sub-Channel 2 are:

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

(mod 2) or 2 (mod 2),

1 (mod 2) or 2 1 (mod 2),

1 (mod 2) or 2 1 (mod 2).

g s m g m s m

g s m g m s m

g s m g m s m

  
    
    

 (9)

Equations (7)–(9) show that there are three equations for each sub-channel, with

two choices for each equation. Thus, each RSNS residue vector can produce up to 23 or

eight unique systems of equations. This means that any RSNS vector can have up to eight

ambiguities within the fundamental period.

The equations also reveal that the start position of the DR, h, can be found by

determining the sub-channel of a particular RSNS vector, solving the equivalent set of

equations to obtain g, and converting g to find h, using (6). To determine which sub-

channel a RSNS vector is from, the even-odd structure of each sub-channel has to be

investigated.

4. Even-Odd Analysis

The even-odd structures (e = even, o = odd) of each sub-channel, and the overall

even-odd structure of a three-channel RSNS with [7 8 9]im  , are illustrated in Figures

8 and 9.

From Figure 8, it can be seen that each sub-channel produces RSNS vectors with

two unique even-odd structures. Thus, the Sub-Channel 0 equations in (7) can be applied

if the RSNS vector is found to be of form  Te e e or  To o o . Similarly, the Sub-Channel

1 equations in (8) are used if the RSNS vector is of form  Te e o or  To o e , and the Sub-

Channel 2 equations in (9) are applied if the RSNS vector is of form  Te o o or  To e e .

 12

m 1=7 e o e o e o e o e o e o e o e o e o

m 2=8 e o e o e o e o e o e o e o e o e o

m 3=9 e o e o e o e o e o e o e o e o e o

h 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
g = h/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 e o e o e o e o e o e o e o e o e o

m 2=8 e o e o e o e o e o e o e o e o e o

m 3=9 o e o e o e o e o e o e o e o e o e

h 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
g = (h -1)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 e o e o e o e o e o e o e o e o e o

m 2=8 o e o e o e o e o e o e o e o e o e

m 3=9 o e o e o e o e o e o e o e o e o e

h 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53
g = (h -2)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sub-Channel 0

Sub-Channel 1

Sub-Channel 2

Figure 8. Even-Odd Structure of RSNS Vectors for Sub-Channels 0, 1 and 2.

This even-odd structure repeats in blocks of six, after cycling through the set of

sub-channels twice, as shown in Figure 9. This means that the minimum distance

between ambiguous parity vectors is always a multiple of six for a three-channel RSNS,

and a multiple of 2N for the N-channel case.

Sub-Channel 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

m 1=7 e e e o o o e e e o o o e e e o o o

m 2=8 e e o o o e e e o o o e e e o o o e

m 3=9 e o o o e e e o o o e e e o o o e e

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 9. Overall Even-Odd Structure of RSNS Vectors.

 It was shown in [2] that for the Sub-Channel 1 and 2 cases, the equations in (6)

and (7) actually convert the even-odd structure of the RSNS vectors to the form  Te e e or

 To o o . Thus, the Sub-Channel 0 case can be exploited as a base case to develop an

efficient RSNS-binary conversion, explained in Section C of this chapter.

 13

B. RSNS DYNAMIC RANGE SEARCH ALGORITHM

 An efficient RSNS dynamic range search algorithm was developed in [6] and [7],

which makes use of the cyclical and symmetrical properties of the RSNS structure to cut

down on the solution space when searching for the DR. This is faster than searching

through the whole solution space, which is computationally intensive. A theoretical

derivation of the DR, including its start and end positions, for a folding ADC of Moduli

7, 8 and 9, based on this algorithm, is provided in this section.

1. Dynamic Range Upper Bound

The upper limit of �M is defined as [6]:

ˆ min 2 1i j
i j i j

M N m m
   

 
         

  (10)

The DR upper bound for an ADC of Moduli 7, 8 and 9 is calculated to be 221:

 

 

 

 

   

   

   

   

1

2

3

4

5

6

7

8

ˆ 3 1 2 7 8 9 1 3026

ˆ 3 7 2 8 9 1 452

ˆ 3 8 2 7 9 1 401

ˆ 3 9 2 7 8 1 362

ˆ 3 7 8 2 9 1 221

ˆ 3 7 9 2 8 1 236

ˆ 3 8 9 2 7 1 257

ˆ 3 7 8 9 2 1

M

M

M

M

M

M

M

M

          

         

         

         

         

         

         

          1 1517

ˆ ˆmin 221
i

M M



        

 (11)

2. RSNS Vector Ambiguity Locations

The solutions to the RSNS vector ambiguity locations for a three-channel case are

shown in Figure 10. Note that all of the ambiguities smaller than the fundamental period

are symmetric around a Center of Ambiguity (COA), as intuitively shown in Figure 4 [6].

 14

The three identifier digits in the Case Label refer to the number of Type 1

ambiguities, combination number and sub-channel number respectively. They are used to

provide a logical case numbering system for implementation in a computer algorithm [2].

Case
Label

Ambiguities occur at h and h+k , where
h is

k is a
multiple

of
COR

010 Any position in the fundamental period 6m 1m 2m 3 N/A

110 h = a (3m 1) - k /2 a (3m 1)

111 h = a (3m 1) + 1 - k /2 a (3m 1) + 1

112 h = a (3m 1) + 2 - k /2 a (3m 1) + 2

120 h = a (3m 2) - k /2 a (3m 2)

121 h = a (3m 2) + 1 - k /2 a (3m 2) + 1

122 h = a (3m 2) - 1 - k /2 a (3m 2) - 1

130 h = a (3m 3) - k /2 a (3m 3)

131 h = a (3m 3) - 2 - k /2 a (3m 3) - 2

132 h = a (3m 3) - 1 - k /2 a (3m 3) - 1

210 h = a (3m 1m2) - k /2 a (3m 1m2)

211 h = a (3m 1m 2) + h s1 - k /2 a (3m 1m 2) + h s1

212 h = a (3m 1m 2) + h s2 - k /2 a (3m 1m 2) + h s2

220 h = a (3m 1m 3) - k /2 a (3m 1m 3)

221 h = a (3m 1m 3) + h s1 - k /2 a (3m 1m 3) + h s1

222 h = a (3m 1m 3) + h s2 - k /2 a (3m 1m 3) + h s2

230 h = a (3m 2m 3) - k /2 a (3m 2m 3)

231 h = a (3m 2m 3) + h s1 - k /2 a (3m 2m 3) + h s1

232 h = a (3m 2m 3) + h s2 - k /2 a (3m 2m 3) + h s2

310 h = a (3m1m 2m 3) - k /2 a (3m1m 2m 3)

311 h = a (3m 1m 2m 3) + h s1 - k /2 a (3m 1m 2m 3) + h s1

312 h = a (3m 1m 2m 3) + h s2 - k /2 a (3m 1m 2m 3) + h s2

6m 2

6m 1

6

6m 2m 3

6m 1m 3

6m 1m 2

6m 3

Figure 10. RSNS Vector Ambiguity Locations (Three-Channel Case).

From Figure 10, it can be seen that the ambiguities in an RSNS structure occur at

position h and h + k, where k is a multiple of the moduli combinations for each case.

There is an inverse relation between the spacing between the ambiguous vectors (k) and

the spacing between the COA.

 15

Recall that a left-shift [0 1 2]ishift  system was implemented to exhibit gray-

code properties. Thus, the base cases involving Sub-Channel 0 (Case XX0) has a COA

shift of 0 0sh  . The cases involving Sub-Channel 1 (Case XX1) and Sub-Channel 2

(Case XX2) will have a COA shifts of 1sh and 2sh , respectively. These are the least

positive solutions to the following two sets of congruence equations [7]:

1 2

1 2

1 2

1 2
0 (mod 7) 0 (mod 7)

3 3
1 1

0 (mod 8) 0 (mod 8)
3 3

2 1
0 (mod 9) 0 (mod 9)

3 3

s s

s s

s s

h h

h h

h h

 
 

 
 

 
 

 (12)

 The COA shifts are computed to be 1 1sh  and 2 23sh  using the generalized

Chinese Remainder Theorem (CRT) procedure described in the Appendix.

The solutions to the RSNS vector ambiguity locations for a RSNS with Moduli 7,

8 and 9, are derived from Figure 10 and summarized in Figure 11. The rows highlighted

in grey have ambiguity pairs with a length greater than � 221M    and can be ignored in

the DR computation.

 16

Case
Label

Ambiguities occur at h and h+k , where
h is

k is a
multiple

of
COA

010 Any position in the fundamental period 3024 N/A

110 h = a (21) - 216 a (21)

111 h = a (21) - 215 a (21) + 1

112 h = a (21) - 214 a (21) + 2

120 h = a (24) - 189 a (24)

121 h = a (24) - 188 a (24) + 1

122 h = a (24) - 190 a (24) - 1

130 h = a (27) - 168 a (27)

131 h = a (27) - 170 a (27) - 2

132 h = a (27) - 169 a (27) - 1

210 h = a (168) - 27 a (168)

211 h = a (168) + h s1 - 27 a (168) + h s1

212 h = a (168) + h s2 - 27 a (168) + h s2

220 h = a (189) - 24 a (189)

221 h = a (189) + h s1 - 24 a (189) + h s1

222 h = a (189) + h s2 - 24 a (189) + h s2

230 h = a (216) - 21 a (216)

231 h = a (216) + h s1 - 21 a (216) + h s1

232 h = a (216) + h s2 - 21 a (216) + h s2

310 h = a (1512) - 3 a (1512)

311 h = a (1512) + h s1 - 3 a (1512) + h s1

312 h = a (1512) + h s2 - 3 a (1512) + h s2

48

42

6

432

378

336

54

Figure 11. RSNS Vector Ambiguity Locations (for Moduli 7, 8 and 9).

3. Minimal Ambiguity Pair Locations

Due to the symmetry of the RSNS vector ambiguity locations about / 2fP , only

ambiguity pairs from   to / 2fh N P N   need to be considered when computing �M

[7]. All the minimal ambiguity pair  1 2,h h locations, derived by substituting integer

values of a , 1 1sh  and 2 23sh  into Figure 11 for each of the cases, are shown in Figure

12, for 3 to 1515h   .

 17

h 1 COA h 2 Case h 1 COA h 2 Case

‐3 0 3 310 670 673 676 311

‐26 1 28 211 732 756 780 220

‐4 23 50 212 860 863 866 312

4 25 46 231 868 889 910 231

82 106 130 221 921 945 969 220

83 107 131 222 981 1008 1035 210

141 168 195 210 982 1009 1036 211

142 169 196 211 1004 1031 1058 212

165 189 213 220 1027 1051 1075 221

194 215 236 232 1028 1052 1076 222

195 216 237 230 1058 1079 1100 232

220 241 262 231 1059 1080 1101 230

271 295 319 221 1084 1105 1126 231

272 296 320 222 1110 1134 1158 220

309 336 363 210 1149 1176 1203 210

310 337 364 211 1150 1177 1204 211

332 359 386 212 1172 1199 1226 212

354 378 402 220 1216 1240 1264 221

410 431 452 232 1217 1241 1265 222

411 432 453 230 1274 1295 1316 232

436 457 478 231 1275 1296 1317 230

460 484 508 221 1300 1321 1342 231

461 485 509 222 1317 1344 1371 210

477 504 531 210 1318 1345 1372 211

478 505 532 211 1340 1367 1394 212

500 527 554 212 1405 1429 1453 221

543 567 591 220 1406 1430 1454 222

626 647 668 232 1509 1512 1515 310

627 648 669 230

Figure 12. Minimal Pair Locations.

4. Consecutive Minimal Pair Locations

In Figure 12, all minimal pairs with a starting position 1h earlier than the starting

position of the previous pair are removed. The remaining minimal pairs are sorted such

that 2h is monotonically increasing and are defined as consecutive minimal pairs [7].

These consecutive minimal pairs are derived from Figure 12 and shown in Figure 13.

 18

h 1 COA h 2 Case

Distance
Between

Consecutive
Minimal Pairs

h 1 COA h 2 Case

Distance
Between

Consecutive
Minimal Pairs

‐3 0 3 310 N.A. 732 756 780 220 109

4 25 46 231 48 860 863 866 312 133

82 106 130 221 125 868 889 910 231 49

83 107 131 222 48 921 945 969 220 100

141 168 195 210 111 981 1008 1035 210 113

142 169 196 211 54 982 1009 1036 211 54

165 189 213 220 70 1004 1031 1058 212 75

194 215 236 232 70 1027 1051 1075 221 70

195 216 237 230 42 1028 1052 1076 222 48

220 241 262 231 66 1058 1079 1100 232 71

271 295 319 221 98 1059 1080 1101 230 42

272 296 320 222 48 1084 1105 1126 231 66

309 336 363 210 90 1110 1134 1158 220 73

310 337 364 211 54 1149 1176 1203 210 92

332 359 386 212 75 1150 1177 1204 211 54

354 378 402 220 69 1172 1199 1226 212 75

410 431 452 232 97 1216 1240 1264 221 91

411 432 453 230 42 1217 1241 1265 222 48

436 457 478 231 66 1274 1295 1316 232 98

460 484 508 221 71 1275 1296 1317 230 42

461 485 509 222 48 1300 1321 1342 231 66

477 504 531 210 69 1317 1344 1371 210 70

478 505 532 211 54 1318 1345 1372 211 54

500 527 554 212 75 1340 1367 1394 212 75

543 567 591 220 90 1405 1429 1453 221 112

626 647 668 232 124 1406 1430 1454 222 48

627 648 669 230 42 1509 1512 1515 310 108

670 673 676 311 48

Figure 13. Consecutive Minimal Pair Locations.

The DR �M is the largest distance between endpoints of two consecutive minimal

pairs, computed in Figure 13. The result is a � 133M  starting at 1 1 733h h   and

ending at 2 1 865h h   , which is in agreement with (5).

 19

C. RSNS-TO-BINARY CONVERSION ALGORITHM

With a good understanding of the underlying RSNS structure, an efficient RSNS-

to-binary conversion can be achieved by exploiting the relationship between the RSNS

and the Residue Number System (RNS) and using the RNS Least Positive Solution (LPS)

and positional alignment techniques to solve for the DR position. These are summarized

in this section.

1. RSNS-RNS Relationship

It was shown in [2] that there is a one-to-one correspondence between the RSNS

and the RNS. This is the key to achieving an efficient RSNS-to-binary conversion as the

RNS has no ambiguities in a fundamental period, unlike the RSNS.

This one-to-one correspondence between the RSNS and RNS vectors, using the

Sub-Channel 0 case as a base case for conversion, is demonstrated in Figure 14. Each

RSNS residue is converted to a unique RNS residue such that there is no ambiguity

within a single channel period.

RSNS m1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

Vectors m2=8 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1

X g m3=9 0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

RNS m1=7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3

Vectors m2=8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

XR g m3=9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sub-Channel 0

Figure 14. One-to-One Correspondence between RSNS and RNS Vectors.

Another useful RNS property is that every XRg vector is either all even or odd,

unlike the RSNS.

 20

It is possible to simplify the conversion by considering only the even XRg vectors

(grey-colored columns in Figure 14) and dividing their values and the index g by two.

This is illustrated in Figure 15.

RSNS m 1=7 0 2 4 6 6 4 2 0 2

Vectors m 2=8 0 2 4 6 8 6 4 2 0

X g/2 m 3=9 0 2 4 6 8 8 6 4 2

g 0 2 4 6 8 10 12 14 16

RNS m 1=7 0 1 2 3 4 5 6 0 1

Vectors m 2=8 0 1 2 3 4 5 6 7 0

XR g /2 /2 m 3=9 0 1 2 3 4 5 6 7 8

g /2 0 1 2 3 4 5 6 7 8

Figure 15. RSNS and RNS Vectors for Even Index g.

From Figure 15, it can be seen that the RSNS vectors are transformed into RNS

vectors with the same PRP moduli. The index position g/2 can now be solved directly

using the standardized CRT [10]. However, there are still up to 23 or eight systems of

equations to solve in order to find the positions of a single RSNS vector within the

fundamental period. This is due to the symmetry of each RSNS channel period and three

sub-channel structure within each channel period.

This process can be simplified by limiting the solution range to within the DR.

The problem is then reduced to finding the least positive solution of the eight systems of

equations, explained in the next section.

2. Dynamic Range Compression

A closed-form solution for the start and end DR positions for moduli of form (2r –

1, 2r, 2r + 1) was derived in [6]. The radix r is 3 for an RSNS with moduli [7 8 9]im  .

The start and end positions can be calculated using [6]:

 3 1 1
1

ˆStart Position of : 3 2 2 2 1r r rM h     

(13)

and

 21

 3 1 2 1
2

ˆEnd Position of : 3 2 2 1.r rM h    

(14)

The DR range is from 1 7 3 3h 

and 2 8 6 5h 

for a RSNS with

 7 8 9im  . The corresponding RSNS vectors are 733 [6 4 7]TX  and 865 [6 0 1]TX 

using the method described in [5].

Recall that this algorithm is applied to the  Te e e vectors in the Sub-Channel 0

case only. Thus, the closest  Te e e vectors to 733X and 865X must be chosen for this

conversion to work. They are 732 [6 4 8]TX  and 864 [6 0 0]TX  .

At this juncture, it must be noted that the chosen start position 1 732h  falls

outside the DR, which will produce ambiguous results during implementation. This is a

special case where the DR does not start with a Sub-Channel 0 vector and end with a

Sub-Channel 2 vector, as required in Figure 9.

There are two methods to overcome this. The first is to truncate the DR to a

multiple of six, so that the DR will always start with a Sub-Channel 0 vector.

Alternatively, the boundary (start and end) vectors have to be treated as special cases in

the LabVIEW implementation. The details of both methods will be addressed in Chapters

IV and V.

 Applying (6), we calculate the corresponding start and end indices for the RNS

XRg vectors as:

1 2
1 2

732 864
244, 288.

3 3 3 3

h h
g g     

(15)

 Using the results from Figure 14, we consider only the even RNS XRg vectors.

The corresponding start and end indices for the RNS XRg/2 / 2 vectors are calculated as:

1 2244 288
122, 144.

2 2 2 2

g g
   

(16)

 22

Using the results from (16), we obtain the total number of RNS vectors required

to find the LPS for the index g as 2 1 1 144 122 1 23
2 2

g g
      , shown in Figure

16. The RNS vectors in Figure 16 are derived from Figure 15 by extending the

'/ 2g index from 122 to 144. The representation of the DR is now compressed from a

length of 133 vectors to 23 vectors.

RNS m 1=7 … 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 …

Vectors m 2=8 … 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 …

XR g /2 /2 m 3=9 … 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 …

g /2 … 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 …

RNS m 1=7 … 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 …

Vectors m 2=8 … 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 …

XR g' /2 /2 m 3=9 … 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 …

LPS g' /2 … 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

Figure 16. RNS Vectors Spanning DR (Before and After Shifting Start Position).

This compression is possible because using only Sub-Channel 0 vectors

compresses the DR by three, and exploiting its even-odd structure yields an additional

compression factor of two. Thus, the total compression factor is 2N, and the number of

RNS vectors required to find the LPS for the index g is [2]:

ˆ 133

23.
2 6

M
L

N

          
 (17)

 23

Another useful RNS property is that subtracting a particular RNS vector from all other

RNS vectors in the fundamental period shifts the start of the RNS sequence to the

position of the same vector [2].

From this fact, the RNS vector /2 122 [3 2 5]
2 2

g TXR XR
  is subtracted from all

RNS vectors between 122

2

XR
 and 144

2

XR
 to obtain the shifted RNS sequence in the

bottom row of Figure 16. This means that the solution for the index h is now shifted to

the range 0 ' 132h  rather than 733 865h  . This is desirable as the former can be

represented in an 8-bit binary number, while the latter requires 10 bits.

3. Alignment of RNS Least Positive Solution

A method of finding the LPS to multiple systems of equations is a positional

alignment solution. This method asserts the positions of the RNS residues for each

channel of the '/2

2
gXR

 vectors, shown in Figure 16. The LPS is the position '/ 2g of the

first '/2

2
gXR

 vector in which all three asserted residues align [2].

After finding the LPS '/ 2g for a particular RSNS vector 1 2 3[]T
hX s s s , the LPS

is converted back to the shifted index 'h by reversing the sub-channel and even-odd

compression process carried out before the LPS alignment. Using SCF to denote the sub-

channel compensation factor, oddF as the even-odd compensation factor, and (6), the

expression to obtain 'h is [2]:

' 3(') ,odd SCh g F F   (18)

where

 24

1

1

0, if residue from is even
,

1, if residue from is odd

0, if is from Sub-Channel 0

1, if is from Sub-Channel 1 .

2, if is from Sub-Channel 2

h
odd

h

h

hSC

h

s X
F

s X

X

XF

X

 
  
 

 
   
 
 

 (19)

Since 'h is the index h after shifting the DR start position to zero, the position of the

RSNS vector within the DR, or index h, can simply be obtained by adding the DR start

position h1:

1 '.h h h  (20)

The key principles and steps of the RSNS-to-binary conversion algorithm

described in this chapter are encapsulated in Figure 17. An efficient RSNS-to-binary

conversion can be achieved by exploiting the RSNS-RNS relationship, as well as using

the RNS LPS and positional alignment techniques to solve for the DR position.

Figure 17. RSNS-to-Binary Conversion Algorithm (After [2]).

 The translation of the principles of this RSNS-to-binary conversion algorithm into

a feasible logic block diagram is explained in the next chapter.

 25

III. RSNS-TO-BINARY CONVERSION

Given the key principles of the RSNS-to-binary conversion algorithm described in

the last chapter, the translation of this algorithm into a feasible logic block diagram for

implementation in the LabVIEW programming environment is explained in this chapter.

A. LOGIC BLOCK DIAGRAM OF RSNS-TO-BINARY CONVERTER

The overall logic block diagram of this converter that can be implemented in

LabVIEW and the input/output variables for each block are shown in Figure 18. The

subsequent sections will detail why each logic block is required and how it is derived.

Figure 18. Logic Block Diagram of RSNS-to-Binary Converter (After [4]).

The inputs of this conversion system come from a bank of 24 comparators at the

end of a photonic analog folding circuit and can be represented as a three-channel RSNS

vector as shown in (2). These comparator outputs are separated into three channels of

seven, eight and nine comparators, according to the Moduli [7 8 9]im  .

 26

The input residues  1 2 3, ,
T

s s s are encoded in a thermometer code for this

implementation, according to (3). Each of the bits in the thermometer code is labeled

as iks , where the index i represents the channel of the RSNS residue vector, and the index

k is the bit position in the thermometer code, with 0k  corresponding to the position of

the Least Significant Bit (LSB). The RSNS thermometer code bits for [7 8 9]im  are

shown in Figure 19.

RSNS
Residue
Value

RSNS
Residue
Value

s 1 s 16 s 15 s 14 s 13 s 12 s 11 s 10 s 2 s 27 s 26 s 25 s 24 s 23 s 22 s 21 s 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 1 1 2 0 0 0 0 0 0 1 1
3 0 0 0 0 1 1 1 3 0 0 0 0 0 1 1 1
4 0 0 0 1 1 1 1 4 0 0 0 0 1 1 1 1
5 0 0 1 1 1 1 1 5 0 0 0 1 1 1 1 1
6 0 1 1 1 1 1 1 6 0 0 1 1 1 1 1 1
7 1 1 1 1 1 1 1 7 0 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

RSNS Thermometer Bits RSNS Thermometer Bits

RSNS
Residue
Value

s 3 s 38 s 37 s 36 s 35 s 34 s 33 s 32 s 31 s 30

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 1 1 1 1
5 0 0 0 0 1 1 1 1 1
6 0 0 0 1 1 1 1 1 1
7 0 0 1 1 1 1 1 1 1
8 0 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1

RSNS Thermometer Bits

Figure 19. RSNS Thermometer Codes for [7 8 9]im  .

 27

B. POSITION BIT CONVERSION

The next step is to convert the RSNS thermometer code residues into RNS

residues using the one-to-one correspondence property of the RSNS-RNS relationship.

Each RNS residue can be represented by a unique position bit.

The position bits are denoted as ikp , where the index i is the channel and k is the

RNS residue value with  0 1ik m   . The LPS is then found by finding the position

'/ 2g where the three position bits from each channel are asserted and aligned.

1. RSNS Thermometer Code to RNS Residue/Position Bit Conversion

The simplest case for this conversion is to consider the residues for Channel 1.

From Equations (7), (8) and (9), we see that the top row of each set of equations is

identical. This means that the conversion of RSNS residues to RNS residues for Channel

1 is the same regardless of the sub-channel that the residue comes from. The conversion

process for Channel 1 1(7)m  is shown in Figure 20.

RSNS
Residue

0 0 0 0 0 0 0
1 1 13 0 12 0 6
2 2 12 2 12 1 6
3 3 11 2 10 1 5
4 4 10 4 10 2 5
5 5 9 4 8 2 4
6 6 8 6 8 3 4
7 7 7 6 6 3 3

RNS
Residue

Even RNS Residue
RNS Residue for

PRP Moduli

1s 1even()s114 s 1even(14)s
1even()

2

s 1even(14)

2

s
1s

Figure 20. Channel 1 RSNS-to-RNS Conversion for all Sub-Channels (After [2]).

 28

Recall that each RSNS residue value 1s can be represented by two unique RNS

residues to prevent ambiguity within a single channel period, as illustrated in Figure 14

previously. This conversion is shown as Step 0 to 1 in Figure 20.

The RNS residues are then rounded down to the nearest even RNS residues and

divided by two to obtain RNS residues with the same PRP moduli as the RSNS, as

illustrated in Figure 15 previously. This conversion is shown as Steps 1 to 3 in Figure 20.

The asserted position bits corresponding to each of the RSNS and RNS residues are

shown in Figure 21.

RSNS
Residue

0 0 0 0 0 0 0 0 0 1
1 0 6 1 0 0 0 0 0 1
2 1 6 1 0 0 0 0 1 0
3 1 5 0 1 0 0 0 1 0
4 2 5 0 1 0 0 0 1 0
5 2 4 0 0 1 0 1 0 0
6 3 4 0 0 1 1 0 0 0
7 3 3 0 0 0 1 0 0 0

RNS Residue for
PRP Moduli

Position Bits

1s
1even()

2

s 1even(14)

2

s
12p 11p 10p13p14p16p 15p

Figure 21. Channel 1 RSNS-RNS-Position Bit Correspondences for all Sub-
Channels (After [2]).

The conversion process for Channel 2 2(8)m  and Channel 3 3(9)m 

are

similar to that of Channel 1, except that they are left-shifted by one and two positions,

respectively. Examination of (7), (8) and (9) reveals that this impacts the conversion of

RSNS residues from different sub-channels.

The RSNS to position bit conversion process for Sub-Channels 0 and 1 of

Channel 2 are illustrated in Figures 22 and 23. The same process for Sub-Channel 2 is

illustrated in Figures 24 and 25.

 29

Note that Sub-Channel 2 is shifted by one relative to Sub-Channels 0 and 1, from

(7), (8) and (9). A comparison of Figures 23 and 25 shows that the position bits of Sub-

Channel 2 are the reversed of those for Sub-Channels 0 and 1.

RSNS
Residue

0 0 0 0 0 0 0
1 1 15 0 14 0 7
2 2 14 2 14 1 7
3 3 13 2 12 1 6
4 4 12 4 12 2 6
5 5 11 4 10 2 5
6 6 10 6 10 3 5
7 7 9 6 8 3 4
8 8 8 8 8 4 4

RNS
Residue

Even RNS Residue
RNS Residue for PRP

Moduli

2s 2even()s216 s 2even(16)s
2even()

2

s 2even(16)

2

s
2s

Figure 22. Channel 2 RSNS-to-RNS Conversion for Sub-Channels 0 and 1 (After
[2]).

RSNS
Residue

0 0 0 0 0 0 0 0 0 0 1
1 0 7 1 0 0 0 0 0 0 1
2 1 7 1 0 0 0 0 0 1 0
3 1 6 0 1 0 0 0 0 1 0
4 2 6 0 1 0 0 0 1 0 0
5 2 5 0 0 1 0 0 1 0 0
6 3 5 0 0 1 0 1 0 0 0
7 3 4 0 0 0 1 1 0 0 0
8 4 4 0 0 0 1 0 0 0 0

RNS Residue for PRP
Moduli

Position Bits

2s
2even()

2

s 2even(16)

2

s
22p 21p 20p23p24p26p 25p27p

Figure 23. Channel 2 RSNS-RNS-Position Bit Correspondences for Sub-Channels 0
and 1 (After [2]).

 30

RSNS
Residue

0 15 15 14 14 7 7
1 0 14 0 14 0 7
2 1 13 0 12 0 6
3 2 12 2 12 1 6
4 3 11 2 10 1 5
5 4 10 4 10 2 5
6 5 9 4 8 2 4
7 6 8 6 8 3 4
8 7 7 6 6 3 3

RNS
Residue

Even RNS Residue
RNS Residue for PRP

Moduli

2s 2even(1)s 215 s 2even(15)s
2even(1)

2

s  2even(15)

2

s
2 1s 

Figure 24. Channel 2 RSNS-to-RNS Conversion for Sub-Channel 2 (After [2]).

RSNS
Residue

0 7 7 1 0 0 0 0 0 0 0
1 0 7 1 0 0 0 0 0 0 1
2 0 6 0 1 0 0 0 0 0 1
3 1 6 0 1 0 0 0 0 1 0
4 1 5 0 0 1 0 0 0 1 0
5 2 5 0 0 1 0 0 1 0 0
6 2 4 0 0 0 1 0 1 0 0
7 3 4 0 0 0 1 1 0 0 0
8 3 3 0 0 0 0 1 0 0 0

RNS Residue for PRP
Moduli

Position Bits

2s
2even()

2

s 2even(15)

2

s
22p 21p 20p23p24p26p 25p27p

Figure 25. Channel 2 RSNS-RNS-Position Bit Correspondences for Sub-Channel 2
(After [2]).

 31

The RSNS to position bit conversion process for Sub-Channel 0 of Channel 3 are

illustrated in Figures 26 and 27. The same process for Sub-Channels 1 and 2 is illustrated

in Figures 28 and 29. Note that Sub-Channels 1 and 2 are shifted by one relative to Sub-

Channel 0, from (7), (8) and (9). A comparison of Figures 27 and 29 shows that the

position bits of Sub-Channels 1 and 2 are the reversed of those for Sub-Channel 0.

RSNS
Residue

0 0 0 0 0 0 0
1 1 17 0 16 0 8
2 2 16 2 16 1 8
3 3 15 2 14 1 7
4 4 14 4 14 2 7
5 5 13 4 12 2 6
6 6 12 6 12 3 6
7 7 11 6 10 3 5
8 8 10 8 10 4 5
9 9 9 8 8 4 4

RNS
Residue

Even RNS Residue
RNS Residue for PRP

Moduli

3s 3even()s318 s 3even(18)s
3even()

2

s 3even(18)

2

s
3s

Figure 26. Channel 3 RSNS-to-RNS Conversion for Sub-Channel 0 (After [2]).

RSNS
Residue

0 0 0 0 0 0 0 0 0 0 0 1
1 0 8 1 0 0 0 0 0 0 0 1
2 1 8 1 0 0 0 0 0 0 1 0
3 1 7 0 1 0 0 0 0 0 1 0
4 2 7 0 1 0 0 0 0 1 0 0
5 2 6 0 0 1 0 0 0 1 0 0
6 3 6 0 0 1 0 0 1 0 0 0
7 3 5 0 0 0 1 0 1 0 0 0
8 4 5 0 0 0 1 1 0 0 0 0
9 4 4 0 0 0 0 1 0 0 0 0

RNS Residue for PRP
Moduli

Position Bits

3s
3even()

2

s 3even(18)

2

s
32p 31p 30p33p34p36p 35p37p38p

Figure 27. Channel 3 RSNS-RNS-Position Bit Correspondences for Sub-Channel 0
(After [2]).

 32

RSNS
Residue

0 17 17 16 16 8 8
1 0 16 0 16 0 8
2 1 15 0 14 0 7
3 2 14 2 14 1 7
4 3 13 2 12 1 6
5 4 12 4 12 2 6
6 5 11 4 10 2 5
7 6 10 6 10 3 5
8 7 9 6 8 3 4
9 8 8 8 8 4 4

RNS
Residue

Even RNS Residue
RNS Residue for PRP

Moduli

3s 3even()s317 s 3even(17)s
3even(1)

2

s  3even(17)

2

s
3 1s 

Figure 28. Channel 3 RSNS-to-RNS Conversion for Sub-Channels 1 and 2 (After
[2]).

RSNS
Residue

0 8 8 1 0 0 0 0 0 0 0 0
1 0 8 1 0 0 0 0 0 0 0 1
2 0 7 0 1 0 0 0 0 0 0 1
3 1 7 0 1 0 0 0 0 0 1 0
4 1 6 0 0 1 0 0 0 0 1 0
5 2 6 0 0 1 0 0 0 1 0 0
6 2 5 0 0 0 1 0 0 1 0 0
7 3 5 0 0 0 1 0 1 0 0 0
8 3 4 0 0 0 0 1 1 0 0 0
9 4 4 0 0 0 0 1 0 0 0 0

RNS Residue for PRP
Moduli

Position Bits

3s
3even(1)

2

s  3even(17)

2

s
32p 31p 30p33p34p36p 35p37p38p

Figure 29. Channel 3 RSNS-RNS-Position Bit Correspondences for Sub-Channels 1
and 2 (After [2]).

 33

2. Position Bit Equations

Using logic tables and Karnaugh mapping, we can show that the general

equations of the position bits for even and odd moduli are [2]:

   

 

   

 

 

 

0 1

1 1 3

2 3 5

3 1
1

2

2

2

4 2
1

2

4 63

2 42

0 21

,

,

,

,

,

,

,

,

,

i ii

ii

i ii

i

i

i

i i

i i i

i i i

i m i mm
i

i mm
i

i m i mm
i

i ii m

i ii m

i ii m

p s

p s s

p s s

p s s

p s

p s s

p s s

p s s

p s s

       

  
    

       





























 (21)

for even moduli, and

   

 

   

 

 

 

0 1

1 1 3

2 3 5

4 2
1

2

2

2

3 1
1

2

4 63

2 42

0 21

,

,

,

,

,

,

,

,

,

i ii

ii

i ii

i

i

i

i i

i i i

i i i

i m i mm
i

i mm
i

i m i mm
i

i ii m

i ii m

i ii m

p s

p s s

p s s

p s s

p s

p s s

p s s

p s s

p s s

       

  
    

       





























 (22)

for odd moduli.

 34

Equations (21) and (22) are used to generate the position bits as follows:

10 11

11 11 13

12 13 15

13 15

14 14 16

15 12 14

16 10 12

,

,

,

,

,

,

,

p s

p s s

p s s

p s

p s s

p s s

p s s















 (23)

for 1 7m  , and

20 21

21 21 23

22 23 25

23 25 27

24 26

25 24 26

26 22 24

27 20 22

,

,

,

,

,

,

,

,

p s

p s s

p s s

p s s

p s

p s s

p s s

p s s
















 (24)

for 2 8m  , and

30 31

31 31 33

32 33 35

33 35 37

34 37

35 36 38

36 34 36

37 32 34

38 30 32

,

,

,

,

,

,

,

,

,

p s

p s s

p s s

p s s

p s

p s s

p s s

p s s

p s s


















 (25)

for 3 9m  .

 35

C. EVEN RESIDUE AND SUB-CHANNEL FLAGS

From Figures 20–29, it can be seen that only the position bits representing even

RSNS residues for all three channels require bit reversal, depending on the sub-channel

they come from. This means that a logic block is required in the converter diagram to

check for even residues and their sub-channels.

1. Even Residue Flags

The letter ‘e’ is used to represent an even residue flag, with the subscript denoting

the channel. Each flag will be asserted when the RSNS residue is even. It was shown in

[2] that the general equations of the even residue flags are:

  0 1 2 3 4 1Even Moduli:
ii i i i i i i me s s s s s s      (26)

and

    0 1 2 3 4 2 1Odd Moduli: .
i ii i i i i i i m i me s s s s s s s      (27)

Equations (26) and (27) are used to generate the even residue flags as follows:

1 10 11 12 13 14 15 16

2 20 21 22 23 24 25 26 27

3 30 31 32 33 34 35 36 37 38

Channel 1: ,

Channel 2: ,

Channel 3: .

e s s s s s s s

e s s s s s s s s

e s s s s s s s s s

   

    

    

 (28)

2. Sub-Channel Flags

The symbol ‘SC’ is used to represent a sub-channel flag, with the subscript

denoting the channel. Each flag is used to determine if the position bits of each RSNS

residue require reversal, depending on their sub-channels. With the sub-script N to denote

the number of channels in the system, it was shown in [2] that the general equations of

the sub-channel flags are:

 36

1 1 2

2 2 3

2 2 1

1 1

0 1

,

,

,

,

,

N

N

N N

N N

N

SC e e

SC e e

SC e e

SC e e

SC e e





 



 

 

 

 

 


 (29)

where 

denotes an XOR operation.

Equation (29) is used to generate the sub-channel flags as follows:

0 3 1

1 3 2

2 2 1

,

,

.

SC e e

SC e e

SC e e

 
 
 

 (30)

D. CONDITIONAL BIT REVERSAL

Conditional bit reversal of the position bits is based on the sub-channel flags. In

order to maintain proper housekeeping of variable-naming, all position bits after

inversion have an additional subscript ‘a’.

Based on Figures 20–29, the position bits of Channel 1 are never reversed. The

position bits of Channel 2 are reversed if the residue is from Sub-Channel 2, i.e., when

2SC is asserted. The position bits of Channel 3 are reversed if the residue is from Sub-

Channel 1 or 2, i.e., when 0SC is asserted. Note that 1SC is not required for this shift

sequence.

This reversal procedure can be accomplished via multiplexer circuits using the

sub-channel flags as control signals and will be shown in Chapter IV.

 37

E. LEAST POSITIVE SOLUTION ALIGNMENT

After determining the position bits for each channel, the position bits from all

three channels are then used to compute the LPS of the positional alignment. One useful

property is to make use of the one-to-one correspondence between the RNS residues and

the position bits. This allows the RNS residues to be replaced by the position bits in

Figure 16. This is shown in Figure 30.

Recall from (15) and (16) that the RNS vector /2 122 [3 2 5]
2 2

g TXR XR
 

corresponds to the RSNS vector 732 [6 4 8]TX  , which is of form  Te e e and from Sub-

Channel 0. From Figure 21, the RSNS Channel 1 residue 1 6s  corresponds to RNS

residues of 3 and 4, which are asserted and highlighted in Figure 30. Similarly, from

Figure 23, the RSNS Channel 2 residue 2 4s  corresponds to RNS residues of 2 and 6,

and the RSNS Channel 3 residue 3 8s  corresponds to RNS residues of 3 and 5 from

Figure 27.

RNS m 1=7 … 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 …

Vectors m 2=8 … 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 …

XR g /2 /2 m 3=9 … 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 …

LPS g /2 … 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 …

m 1=7 … p13 p14 p15 p16 p10 p11 p12 p13 p14 p15 p16 p10 p11 p12 p13 p14 p15 p16 p10 p11 p12 p13 p14 …

m 2=8 … p22 p23 p24 p25 p26 p27 p20 p21 p22 p23 p24 p25 p26 p27 p20 p21 p22 p23 p24 p25 p26 p27 p20 …

m 3=9 … p35 p36 p37 p38 p30 p31 p32 p33 p34 p35 p36 p37 p38 p30 p31 p32 p33 p34 p35 p36 p37 p38 p30 …

LPS g' /2 … 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

Position
Bits

Figure 30. LPS Alignment using Position Bits.

 38

The asserted RNS residues for the three channels are shown in Figure 30. Ideally,

only one LPS should be active within the DR to prevent ambiguities. However, there is

more than one LPS (LPS0 and LPS8) asserted for this case.

There is an ambiguity in this case because the DR length (133) is not evenly

divisible by six, and the DR starts at an index position (733) that is not evenly divisible

by six. There are two methods to overcome this, and these are explained below.

1. Full Dynamic Range With LPS Priority

If the DR is not truncated to a length that is evenly divisible by six, it is possible

that two LPS equations will be asserted at the same time – one of the boundary LPS

equations (i.e., LPS0 or LPS22) and LPSX. If the full DR is to be maintained, the

boundary LPS equation should always be ignored in favor of the LPSX solution.

This can be done by using additional logic circuitry to check for such cases and

giving priority to the LPSX solution over the boundary LPS equations. The details of this

circuitry are elaborated in Chapter V.

2. Truncated Dynamic Range

The DR can be truncated to a length that is evenly divisible by six, i.e., 126, so

that it starts with a Sub-Channel 0 vector and ends with a Sub-Channel 2 vector, as

required in Figure 9. The number of RNS vectors required to span the DR is now:

ˆ 126

21.
2 6

M
L

N

          
 (31)

For the first case where the full DR is maintained, the number of RNS vectors

required to span the DR is 23, in accordance with (17). The full 23 alignment equations

are given by

 39

0 13 22 35

1 14 23 36

2 15 24 37

3 16 25 38

4 10 26 30

5 11 27 31

6 12 20 32

7 13 21 33

0: ,

1: ,

2: ,

3: ,

4: ,

5: ,

6: ,

7: ,

8:

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS

















8 14 22 34

9 15 23 35

10 16 24 36

11 10 25 37

12 11 26 38

13 12 27 30

14 13 20 31

15 14 21 32

16 15

,

9: ,

10: ,

11: ,

12: ,

13: ,

14: ,

15: ,

16:

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a

n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p

















 22 33

17 16 23 34

18 10 24 35

19 11 25 36

20 12 26 37

21 13 27 38

22 14 20 30

,

17: ,

18: ,

19: ,

20: ,

21: ,

22: .

a a

a a a

a a a

a a a

a a a

a a a

a a a

p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p

LPS n p p p













 (32)

These operations can be accomplished using 3-input NAND gates. Note that the last two

LPS equations (LPS21 and LPS22) are not required for the truncated DR case.

 40

F. ENCODER

The next step is to convert from the LPS index / 2g to a binary representation of

the position h of the RSNS vector within the DR bounds. Since only one of the LPSX

equations will be asserted at any one time, an encoder can be used to convert the 23

possible outputs to a binary representation using B bits, calculated via

2log .B L    (33)

Five bits are required for both the full and truncated DR cases, with a 23-to-5 encoder for

the full DR case and a 21-to-5 encoder for the truncated DR case.

G. ADDER

As the output of the encoder is a five-bit representation of / 2g , a left-shifted

version of / 2g is equivalent to a multiplication by two and converts it to a six-bit index

g. From (18), the oddF compensation factor has to be computed next, as the DR was

compressed using even residues only. The factor oddF is equal to 1e since the

complement of 1e is asserted when the Channel 1 residue 1s is odd, as shown in (28). The

LSB of g is guaranteed to be zero, as g is a left-shifted version of / 2g . Thus, the even

residue flag 1e can replace the LSB of g.

From Equation (18), the computation of 13()g e is also required. It is easier to

implement this as 3 2X X X  in hardware using a wired shift and an adder rather than

a multiplication by three using a multiplexer. To achieve this, 1()g e is shifted one

position left to form  12 g e and used as the input to an eight-bit carry-look-ahead

adder. This concept is illustrated in Figure 31, where the notation bg refers to the bth bit

of the binary representation of index g [2].

 41

 
 
 

1 4 3 2 1 0 1

1 4 3 2 1 0 1

' ' ' ' ' ' ' '
1 7 6 5 4 3 2 1 0

2 2 0

3 3

X g e g g g g g e

X g e g g g g g e

X g e h h h h h h h h



     



Figure 31. Adder Function for Implementing Multiplication by Three (After [2]).

Lastly, Equation (18) requires the addition of the SCF compensation factor, as the

DR was compressed using Sub-Channel 0 vectors only. The SCF compensation factor is

represented by the signals 2SC and 0SC from (30), which are asserted if the Channel 2

residue is from Sub-Channel 2, and the Channel 3 residue is from Sub-Channel 1 or 2,

respectively.

Fortunately, the left shift of 1()g e provides a LSB slot guaranteed to be zero,

and the carry-in to the adder provides another LSB slot. This allows 1()g e ,  12 g e ,

0SC , and 2SC to be summed in a single adder [2], shown in Figure 32.

 
 
 

01 4 3 2 1 0 1 2

1 4 3 2 1 0 1

' ' ' ' ' ' ' '
1 7 6 5 4 3 2 1 0

2 2 (carry-in)

3 3

X g e g g g g g e SC SC

X g e g g g g g e

X g e h h h h h h h h

 

     



Figure 32. Single Adder for Converting LPS to Binary (After [2]).

The output of this adder is the binary representation of the position h within the

DR for the RSNS vector  1 2 3hX s s s
 . The LabVIEW circuit schematics that

implement the logic equations developed in this chapter are provided in the next chapter.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

IV. LABVIEW IMPLEMENTATION OF RSNS-TO-BINARY
CONVERSION

Using the logic equations developed in the previous chapter, we document the

process of implementing the RSNS-to-binary converter in the NI LabVIEW

programming environment in this chapter.

A. LABVIEW SCHEMATICS OF RSNS-TO-BINARY CONVERTER

The NI LabVIEW programming environment was specifically selected as its

programming structure is modular in nature. This allows the codes for each logic block to

be stored as sub-routines or sub-Virtual Instruments (sub-VIs) and run as part of a larger

routine or Virtual Instrument (VI).

This modular structure is beneficial for the future expansion of such RSNS ADC

system as it allows additional sub-routines to be designed and added to existing routines

should it be decided to scale the ADC to higher moduli configurations in future.

In addition, if the ADC requires future upgrading, it is relatively easy to replace

current FPGA modules with other higher-speed and higher-bandwidth NI modules with

minimal disruption to existing codes due to its plug-and-play features.

The overall schematics of this converter in LabVIEW are shown in Figure 33

based on the major logic blocks developed in Chapter III. The process of constructing

each logic block as a sub-routine and implementing it as part of the overall routine is

detailed in the subsequent sections.

 44

Figure 33. Overall LabVIEW Schematics of RSNS-to-Binary Converter.

B. POSITION BIT CONVERSION AND EVEN RESIDUE/SUB-CHANNEL
FLAGS

The logic blocks for position bit conversion and even residue flags are combined,

as both of them can be calculated using the thermometer codes from the comparators.

The Boolean equations used are modified from those in Chapter III. The only changes are

the application of DeMorgan’s Theorem to use NAND, NOR and inverter gates

predominantly.

1. Channel 1

DeMorgan’s Theorem was applied to equations (23) and (28) to obtain:

 45

10 11

11 11 13 11 13

12 13 15 13 15

13 15

14 14 16 14 16

15 12 14 12 14

16 10 12 10 12

,

,

,

,

,

,

,

p s

p s s s s

p s s s s

p s

p s s s s

p s s s s

p s s s s



  

  


  

  

  

 (34)

and

    1 10 11 12 13 14 15 16 10 11 12 13 14 15 16 .e s s s s s s s s s s s s s s     (35)

The implementation of equations (34) and (35) in LabVIEW is shown in Figure 33.

Figure 34. LabVIEW Schematics of Channel 1 Position Bit and Even Residue Flag.

 46

2. Channel 2

DeMorgan’s Theorem was applied to equations (24) and (28) to obtain

20 21

21 21 23 21 23

22 23 25 23 25

23 25 27 25 27

24 26

25 24 26 24 26

26 22 24 22 24

27 20 22 20 22

,

,

,

,

,

,

,

,

p s

p s s s s

p s s s s

p s s s s

p s

p s s s s

p s s s s

p s s s s



  

  

  


  

  

  

 (36)

and

    2 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27.e s s s s s s s s s s s s s s s s      (37)

The implementation of equations (36) and (37) in LabVIEW is shown in Figure 35.

Figure 35. LabVIEW Schematics of Channel 2 Position Bit and Even Residue Flag.

 47

3. Channel 3

DeMorgan’s Theorem was applied to equations (25) and (28) to obtain

30 31

31 31 33 31 33

32 33 35 33 35

33 35 37 35 37

34 37

35 36 38 36 38

36 34 36 34 36

37 32 34 32 34

38 30 32 30 32

,

,

,

,

,

,

,

,

,

p s

p s s s s

p s s s s

p s s s s

p s

p s s s s

p s s s s

p s s s s

p s s s s



  

  

  


  

  

  

  

 (38)

and

     3 30 31 32 33 34 35 36 37 38 30 31 32 33 34 35 36 37 38 .e s s s s s s s s s s s s s s s s s s      (39)

The implementation of equations (38) and (39) in LabVIEW is shown in Figure 36.

 48

Figure 36. LabVIEW Schematics of Channel 3 Position Bit and Even Residue Flag.

4. Sub-Channel Flags

Equation (30) was used to construct the Sub-Channel flags in Figures 37 and 38

using XOR gates. They are used to check if the position bits of each RSNS residue

require bit reversal, depending on which sub-channel it is from.

Figure 37. Sub-Channel 0 Flag.

 49

Figure 38. Sub-Channel 2 Flag.

C. CONDITIONAL BIT REVERSAL

Each inverted position bit was mapped from two possible states, depending on

whether it was inverted or not. For example, the position bit p20a was mapped from p20 if

it was not inverted and mapped from p27 if it was inverted. Thus, the Boolean expression

for position bit p20a can be expressed as:   20 27 2 20 2 27 2 20 2ap p SC p SC p SC p SC   .

The conditional bit reversal for each position bit can be accomplished by the use

of a 2-to-1 multiplexer, shown in Figure 39, using the sub-channel flag as a control

signal. The desired output is either Input 1 or Input 2, depending on whether the control

signal is asserted or not asserted, respectively. This procedure can be applied to all the

other position bits.

Figure 39. 2-to-1 Multiplexer (After [4]).

Given Figure 39 as a basic building block, the multiplexer architecture is

extended to form the Channel 2 and Channel 3 bit reversal circuits, shown in the next two

sections. The only modifications are that NAND gates are predominantly used to achieve

the same logic operation as the AND and OR gates in Figure 39.

 50

1. Channel 2 Reversal

Recall that the position bits of Channel 1 are never reversed from Figure 21. Thus,

a Channel 1 reversal circuit is not required for this implementation. For Channel 2, the

position bits are reversed if the residue is from Sub-Channel 2, i.e., when 2SC is asserted,

from a comparison of Figures 23 and 25. The LabVIEW schematics of the Channel 2

conditional bit reversal circuit are shown in Figure 40.

Figure 40. LabVIEW Schematics of Channel 2 Conditional Bit Reversal.

2. Channel 3 Reversal

For Channel 3, the position bits are reversed if the residue is from Sub-Channel 1

or 2, i.e., when 0SC is asserted, from a comparison of Figures 27 and 29. The LabVIEW

schematics of the Channel 3 conditional bit reversal circuit are shown in Figure 41.

 51

Figure 41. LabVIEW Schematics of Channel 3 Conditional Bit Reversal.

D. ALIGNMENT LOGIC

The LabVIEW schematics of the alignment logic circuit to achieve the full DR of

133 are shown in Figure 42. It is a direct mapping of equation (32). The only

modification is the insertion of inverters to allow the proper functioning of the encoder

circuit.

 52

Figure 42. LabVIEW Schematics of Alignment Logic (Full DR).

Note that the last two LPS equations (LPS21 and LPS22) are not required for the

truncated DR case, and have to be removed if it is implemented.

 53

E. ENCODER

Since only one of the LPSX equations will be asserted at any one time in the

Alignment Logic circuit in Figure 42, an encoder can be used to convert the 23 possible

outputs to a 5-bit representation.

To achieve this, a logic table is derived in Table 2. The function of the encoder is

to convert the LPS number of the asserted NAND gate into a five-bit output. For

example, if n22 is the active NAND gate, the encoder output will be 10110.

Table 2. Encoder Logic Table.

Active NAND Gate g4 g3 g2 g1 g0
n0 0 0 0 0 0
n1 0 0 0 0 1
n2 0 0 0 1 0
n3 0 0 0 1 1
n4 0 0 1 0 0
n5 0 0 1 0 1
n6 0 0 1 1 0
n7 0 0 1 1 1
n8 0 1 0 0 0
n9 0 1 0 0 1
n10 0 1 0 1 0
n11 0 1 0 1 1
n12 0 1 1 0 0
n13 0 1 1 0 1
n14 0 1 1 1 0
n15 0 1 1 1 1
n16 1 0 0 0 0
n17 1 0 0 0 1
n18 1 0 0 1 0
n19 1 0 0 1 1
n20 1 0 1 0 0
n21 1 0 1 0 1
n22 1 0 1 1 0

 54

The output bits of the encoder are thus the OR combination of all the logic 1s in

their respective columns in Table 2. For example, g4 will be asserted if any of the n16,

n17, n18, n19, n20, n21 and n22 gate is active. Again, note that the last two gates are not

required for the truncated DR case and have to be removed if it is implemented.

The LabVIEW implementation of the encoder for the truncated DR and the full

DR cases are highlighted in the next two sections.

1. Truncated Dynamic Range

The logical binary expressions for the 21-to-5 encoder for the truncated DR case,

derived from Table 2, are given by

    
    
   
   
  

0 1 3 5 7 9 11 13 15 17 19

1 2 3 6 7 10 11 14 15 18 19

2 4 5 6 7 12 13 14 15 20

3 8 9 10 11 12 13 14 15

4 16 17 18 19 20 .

g n n n n n n n n n n

g n n n n n n n n n n

g n n n n n n n n n

g n n n n n n n n

g n n n n n

      

      

      

     

   

 (40)

The implementation of equation (40) in LabVIEW as an encoder circuit to

achieve the truncated DR of 128 is shown in Figure 43.

 55

Figure 43. LabVIEW Schematics of Encoder (Truncated DR).

2. Full Dynamic Range

The logical binary expressions for the 23-to-5 encoder for the full DR case,

derived from Table 2, are given by

    
     
    
   
   

0 1 3 5 7 9 11 13 15 17 19 21

1 2 3 6 7 10 11 14 15 18 19 22

2 4 5 6 7 12 13 14 15 20 21 22

3 8 9 10 11 12 13 14 15

4 16 17 18 19 20 21 22 .

g n n n n n n n n n n n

g n n n n n n n n n n n

g n n n n n n n n n n n

g n n n n n n n n

g n n n n n n n

       

       

       

     

    

 (41)

 56

The implementation of equation (41) in LabVIEW as an encoder circuit is shown

in Figure 44.

Figure 44. LabVIEW Schematics of Encoder (Full DR).

 57

F. ADDER

 The LabVIEW schematics of the adder circuit to convert the encoder’s 5-bit

representation to a binary representation of the position h within the DR are shown in

Figure 45. It is a direct implementation of Figure 32.

Figure 45. LabVIEW Schematics of Adder.

The implementation of the logic blocks of the RSNS-to-binary converter in LabVIEW

was shown in this chapter. The simulation and testing of this converter to verify that the

conversion logic is functioning properly is documented in the next chapter.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

V. SIMULATION OF RSNS-TO-BINARY CONVERSION

The simulation and testing of the RSNS-to-binary converter to verify that the

conversion logic is functioning properly is contained in this chapter. The first section of

this chapter is a description of the creation of thermometer codes for each channel in

LabVIEW to simulate as the inputs to the conversion algorithm. The second section

contains the key results obtained for three simulation models (truncated DR, full DR, and

full DR with LPS Priority cases).

A. LABVIEW THERMOMETER CODE GENERATORS

The LabVIEW software does not have functions to generate the thermometer

codes directly. However, the one-to-one correspondence between the RNS and RSNS

vectors can be exploited to convert a RNS structure into a RSNS thermometer code.

Previously, it was demonstrated in Figure 14 that each RSNS thermometer code

can be mapped to a unique RNS state such that there is no ambiguity within a single

channel period. Thus, LabVIEW functions can be created to act as counters to cycle

through the RNS states for each channel, and digital logic can be added to map each RNS

state to the required RSNS thermometer code. The next three sections contain the details

of the procedure to generate the thermometer codes for each of the three channels.

1. Channel 1

The logic table for Channel 1 is shown in Table 3. The RNS states are represented

by the bits 13 12 11 10{ , , , }i i i i and are the inputs to the Channel 1 thermometer code generator.

The desired thermometer code output is represented by the RSNS bits

16 15 14 13 12 11 10{ , , , , , , }s s s s s s s .

Karnaugh maps are used to carry out logic minimization for Table 3, shown in

Figure 46.

 60

Table 3. Channel 1 (1 7m ) Logic Table.

RNS State i13 i12 i11 i10 RSNS State s16 s15 s14 s13 s12 s11 s10
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 1
2 0 0 1 0 2 0 0 0 0 0 1 1
3 0 0 1 1 3 0 0 0 0 1 1 1
4 0 1 0 0 4 0 0 0 1 1 1 1
5 0 1 0 1 5 0 0 1 1 1 1 1
6 0 1 1 0 6 0 1 1 1 1 1 1
7 0 1 1 1 7 1 1 1 1 1 1 1
8 1 0 0 0 6 0 1 1 1 1 1 1
9 1 0 0 1 5 0 0 1 1 1 1 1
10 1 0 1 0 4 0 0 0 1 1 1 1
11 1 0 1 1 3 0 0 0 0 1 1 1
12 1 1 0 0 2 0 0 0 0 0 1 1
13 1 1 0 1 1 0 0 0 0 0 0 1

Figure 46. Channel 1 Logic Minimization of Table 3 (After [4]).

 61

The logic minimization in Figure 46 is used to produce the logic equations

   
   

   
   

 

10 3 2 1 0 3 2 1 0

11 1 3 2 3 2 3 0 1 3 2 3 2 3 0

12 3 2 3 2 1 0 3 2 3 2 1 0

13 3 2 3 2 1 3 2 0 3 2 3 2 1 3 2 0

14 2 1 3 2 0 3 2 1 2 1 3 2 0 3 2 1

15 2 1 3 2 1 0 2 1 3 2 1

s i i i i i i i i

s i i i i i i i i i i i i i i

s i i i i i i i i i i i i

s i i i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i i i

s i i i i i i i i i i i

       

    

   

   

   

    0

16 2 1 0 2 1 0

i

s i i i i i i   

(42)

These logic equations are used to implement the Channel 1 thermometer code

generator in LabVIEW, shown in Figure 47.

Figure 47. LabVIEW Channel 1 Thermometer Code Generator.

 62

Note that DeMorgan’s Theorem was used to achieve a convenient pipelined

implementation of all bits in the three channels.

2. Channel 2

The logic table for Channel 2 is shown in Table 4. The RNS states are represented

by the bits 23 22 21 20{ , , , }i i i i and are the inputs to the Channel 2 thermometer code generator.

The desired thermometer code output is represented by the RSNS bits

27 26 25 24 23 22 21 20{ , , , , , , , }s s s s s s s s .

Table 4. Channel 2 (2 8m ) Logic Table.

RNS State i23 i22 i21 i20 RSNS State s27 s26 s25 s24 s23 s22 s21 s20
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 1
2 0 0 1 0 2 0 0 0 0 0 0 1 1
3 0 0 1 1 3 0 0 0 0 0 1 1 1
4 0 1 0 0 4 0 0 0 0 1 1 1 1
5 0 1 0 1 5 0 0 0 1 1 1 1 1
6 0 1 1 0 6 0 0 1 1 1 1 1 1
7 0 1 1 1 7 0 1 1 1 1 1 1 1
8 1 0 0 0 8 1 1 1 1 1 1 1 1
9 1 0 0 1 7 0 1 1 1 1 1 1 1
10 1 0 1 0 6 0 0 1 1 1 1 1 1
11 1 0 1 1 5 0 0 0 1 1 1 1 1
12 1 1 0 0 4 0 0 0 0 1 1 1 1
13 1 1 0 1 3 0 0 0 0 0 1 1 1
14 1 1 1 0 2 0 0 0 0 0 0 1 1
15 1 1 1 1 1 0 0 0 0 0 0 0 1

Karnaugh maps are used to carry out logic minimization for Table 4, shown in

Figure 48.

 63

Figure 48. Channel 2 Logic Minimization of Table 4 (After [4]).

The logic minimization in Figure 48 is used to produce the logic equations

    
    

   
   

20 3 2 1 0 3 2 1 0

21 3 2 3 1 2 1 1 0 3 2 3 1 2 1 1 0

22 3 2 2 1 3 1 0 3 2 1 3 2 2 1 3 1 0 3 2 1

23 3 2 3 2 3 1 0 3 2 3 2 3 1 0

24 3 2 3 2 0 3 2 1 3 2 3 2 0 3 2 1

25 3 2 1

s i i i i i i i i

s i i i i i i i i i i i i i i i i

s i

s i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i i i

s i i i

       

    

    

   

   

     
  

3 2 1 3 2 0 3 2 1 3 2 1 3 2 0

26 3 2 1 3 2 1 0 3 2 1 3 2 1 0

27 3 2 1 0 3 2 1 0

i i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i

s i i i i i i i i

 

  

    

 (43)

 64

These logic equations are used to implement the Channel 2 thermometer code

generator in LabVIEW, shown in Figure 49.

Figure 49. LabVIEW Channel 2 Thermometer Code Generator.

 65

3. Channel 3

The logic table for Channel 3 is shown in Table 5. The RNS states are represented

by the bits 34 33 32 31 30{ , , , , }i i i i i and are the inputs to the Channel 3 thermometer code

generator. The desired thermometer code output is represented by the RSNS bits

38 37 36 35 34 33 32 31 30{ , , , , , , , , }s s s s s s s s s .

Table 5. Channel 3 (3 9m ) Logic Table.

RNS
State

i34 i33 i32 i31 i30
RSNS
State

s38 s37 s36 s35 s34 s33 s32 s31 s30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
2 0 0 0 1 0 2 0 0 0 0 0 0 0 1 1
3 0 0 0 1 1 3 0 0 0 0 0 0 1 1 1
4 0 0 1 0 0 4 0 0 0 0 0 1 1 1 1
5 0 0 1 0 1 5 0 0 0 0 1 1 1 1 1
6 0 0 1 1 0 6 0 0 0 1 1 1 1 1 1
7 0 0 1 1 1 7 0 0 1 1 1 1 1 1 1
8 0 1 0 0 0 8 0 1 1 1 1 1 1 1 1
9 0 1 0 0 1 9 1 1 1 1 1 1 1 1 1
10 0 1 0 1 0 8 0 1 1 1 1 1 1 1 1
11 0 1 0 1 1 7 0 0 1 1 1 1 1 1 1
12 0 1 1 0 0 6 0 0 0 1 1 1 1 1 1
13 0 1 1 0 1 5 0 0 0 0 1 1 1 1 1
14 0 1 1 1 0 4 0 0 0 0 0 1 1 1 1
15 0 1 1 1 1 3 0 0 0 0 0 0 1 1 1
16 1 0 0 0 0 2 0 0 0 0 0 0 0 1 1
17 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1

Karnaugh maps are used to carry out logic minimization for Table 5, shown in

Figure 50.

 66

Figure 50. Channel 3 Logic Minimization of Table 5 (After [4]).

 67

The logic minimization in Figure 50 is used to produce the logic equations

  
  

  
    
    

30 4 3 2 1 0 4 3 2 1 0

31 4 0 3 2 1 4 0 3 2 1

32 3 2 1 0 3 2 1 0

33 3 2 3 1 3 2 3 0 3 2 3 1 3 2 3 0

34 3 2 3 1 2 1 0 3 2 1 3 2 3 1 2 1 0 3 2 1

35 3 2 3 1 0 3 2 1 3

s i i i i i i i i i i

s i i i i i i i i i i

s i i i i i i i i

s i i i i i i i i i i i i i i i i

s i

s i i i i i i i i i i

        

      

    

    

    

       
  
  

2 3 1 0 3 2 1

36 3 2 1 0 3 2 3 2 1 0 3 2

37 3 2 1 3 2 0 3 2 1 3 2 0

38 3 2 1 0 3 2 1 0

i i i i i i

s i i i i i i i i i i i i

s i i i i i i i i i i i i

s i i i i i i i i

  

  

    

 (44)

These logic equations are used to implement the Channel 3 thermometer code

generator in LabVIEW, shown in Figure 51.

 68

Figure 51. LabVIEW Channel 3 Thermometer Code Generator.

 69

B. SIMULATION MODEL

To test the RSNS-to-binary conversion, a simulation model was created with the

thermometer code generators from the three channels enclosed within a case structure,

shown in Figure 52. A ‘Master Clock’ global variable was created to determine the

starting channel and to step through each of the three channels. Three ‘Channel Count’

global variables were used to set the channel start positions.

Figure 52. LabVIEW Simulation of RSNS-to-Binary Conversion.

 70

C. SIMULATION RESULTS

After running the simulation model in Figure 52, the thermometer code inputs and

the RSNS-to-binary conversion output can be viewed on the respective scopes located in

the LabVIEW Front Panel.

1. Truncated Dynamic Range

The thermometer code inputs and the simulated RSNS-to-binary output with no

ambiguities within the truncated DR of 126 are shown in Figure 53. The RSNS position

index h is from 733 to 857.

Figure 53. Simulated RSNS-to-Binary Output (Truncated DR Case).

 71

2. Full Dynamic Range

To achieve the full DR, the encoder circuit in Figure 44 was used in place of

Figure 43 in the RSNS-to-binary conversion. The ambiguities in the simulated RSNS-to-

binary output within the full DR of 133 are shown in Figure 54. The RSNS position index

h is from 733 to 865.

Figure 54. Simulated RSNS-to-Binary Output (Full DR Case with Ambiguities).

3. LPS Priority Circuit

The ambiguities in Figure 54 occur because the DR does not start with a Sub-

Channel 0 vector and end with a Sub-Channel 2 vector, as required in Figure 9. As a

result, a start position with a Sub-Channel 0 vector 1(732)h  has to be chosen outside

the DR, during the DR compression process in Chapter II.

 72

As the DR is not truncated to a length evenly divisible by six, there may be

ambiguities where two LPS equations will be asserted at the same time – one of the

boundary LPS equations (i.e. LPS0 or LPS22) and LPSX. If the full DR is to be

maintained with no ambiguities, the boundary LPS equation should always be ignored in

favor of the LPSX solution.

This can be done by implementing an encoder with an addition of a LPS Priority

circuit to check for such cases, and giving priority to the center 21 NAND gates over the

first and last NAND gates. This is shown in Figure 55.

Figure 55. LabVIEW Schematics of Encoder with LPS Priority Circuit.

 73

4. Full Dynamic Range with LPS Priority Circuit

To achieve the full DR with no ambiguities, the encoder circuit in Figure 55 was

used in place of Figures 43 and 44 in the RSNS-to-binary conversion. From Figure 56, it

can be seen that there are no ambiguities in the simulated RSNS-to-binary output within

the full DR of 133. The RSNS position index h is from 733 to 865.

Figure 56. Simulated RSNS-to-Binary Output (Full DR Case with No Ambiguities).

Table 6. Comparison of Dynamic Range.

Model Position Index h Dynamic Range Ambiguities?

Truncated DR 733 – 857 126 No

Full DR 733 – 865 133 Yes

Full DR with LPS Priority 733 – 865 133 No

 74

A comparison of the dynamic range achieved by the three different cases is shown

in Table 6. The simulation proves that an eight-bit DR of 133 can be achieved for a three-

channel RSNS ADC with Moduli m1 = 7, m2 = 8 and m3 = 9. This is in agreement with

the theoretical DR calculated from (5), and a one-bit improvement over that achieved in

[4].

Simulation of the RSNS-to-binary conversion algorithm was successfully carried

out to verify that it is working properly in this chapter. In the next chapter, the

implementation of the comparator circuit and RSNS-to-binary conversion algorithm on a

FPGA to allow the code to run at a higher sampling rate and frequency is elaborated. The

FPGA is then integrated with the front-end photonics implementation to form the overall

folding ADC architecture.

 75

VI. ADC INTEGRATION

The integration process to form an overall folding ADC system is documented in

this chapter. The first section of this chapter contains an illustration of the

implementation of the comparator circuit design and RSNS-to-binary conversion

algorithm on an NI FPGA to form the DDS module. The integration of the DDS module

with the front-end PES module in [5] is highlighted in the second section.

A. DIGITAL DECODING SUB-SYSTEM

 An overview of the DDS module from the bank of comparators to the FPGA is

shown in Figure 57. An NI-9215 Analog Input Module is used to connect the three

analog photo-detector inputs from the front-end PES module to the NI-9111 Chassis with

an onboard XILINX Virtex-5 LX30 FPGA. The FPGA output is then sent to the NI-9012

CompactRIO (cRIO) Real-Time Controller (RTC), and can be saved to a file using a

LabVIEW Host Interface VI.

Figure 57. DDS Module Setup.

 76

The comparator speed was a limiting factor in the ADC system speed as actual

comparator ICs were used for sampling outside the FPGA in [3]. The key improvement

made in the DDS module setup in Figure 57 is that the comparator circuits reside in the

FPGA, allowing them to sample at a rate equal to the FPGA speed.

Lastly, the comparator circuit and RSNS-to-binary conversion logics are run on

the FPGA to guarantee a higher FPGA execution speed as opposed to running it on the

RTC with a lower processing speed.

B. COMPARATORS

In the actual ADC architecture, comparators are used to convert the analog photo-

detector outputs into thermometer codes for each channel in place of thermometer code

generators. The threshold values for the comparators can be expressed as [3]:

2 (1)
(,) *cos

2 2ii
RSNS RSNS

fs
kN

T k m
P P

V     
    

  

 (45)

where k = 0, 1, …, mi – 1, Vfs = full-scale voltage for channel Moduli mi, N = number of

channels, and PRSNS = period of RSNS channel = 2Nmi.

The full-scale voltage is defined as the maximum amplitude of the modulated

signal for each channel and determined in [5].

1. Channel 1

Using (45) with 2.5fsV  (from [5]), we calculate the quantized threshold values

for Channel 1 as:

 1(,) [0.0313, 0.2727, 0.7076, 1.2500, 1.7924, 2.2273, 2.4687].T k m  (46)

 77

The implementation of the Channel 1 comparators in LabVIEW using the

threshold voltages calculated in (46) is shown in Figure 58.

Figure 58. LabVIEW Schematics of Channel 1 Comparators.

2. Channel 2

Using (45) with 5.11fsV  (provided from [5]), we calculate the quantized

threshold values for Channel 2 as

2(,) [0.0419, 0.4306, 1.1355, 2.0565, 3.0535, 3.9745, 4.6794, 5.0609].T k m  (47)

The implementation of the Channel 2 comparators in LabVIEW using the

threshold voltages calculated in (47) is shown in Figure 59.

 78

Figure 59. LabVIEW Schematics of Channel 2 Comparators.

3. Channel 3

Using (45) with 4.96fsV  (provided from [5]), we calculate the quantized

threshold values for Channel 3 as

3(,) [0.0377, 0.3323, 0.8859, 1.6318, 2.4800, 3.3282, 4.0741, 4.6277, 4.9223].T k m  (48)

The implementation of the Channel 3 comparators in LabVIEW using the

threshold voltages calculated in (48) is shown in Figure 60.

 79

Figure 60. LabVIEW Schematics of Channel 3 Comparators.

C. FPGA IMPLEMENTATION

In order to implement the comparators and RSNS-to-binary conversion on the

FPGA, a LabVIEW FPGA project was created as ‘FPGA789.lvproj’. An overview of this

FPGA project is shown in Figure 61.

The FPGA has a Dynamic Memory Allocation (DMA) First-In-First-Out (FIFO)

buffer, which is used to transfer data from the FPGA to a host computer for this project.

LabVIEW also requires the creation of an FPGA VI to run the necessary codes on the

FPGA and a Host VI to communicate with the FPGA VI, which will be explained in the

next two sections.

 80

Figure 61. LabVIEW FPGA Project Overview.

1. FPGA VI

In the FPGA VI, the three photo-detector inputs were read in using the NI-9215

Analog Input Module, sampled using the comparator circuits, and processed using the

RSNS-to-binary conversion algorithm. The RSNS-to-binary output was then stored in the

DMA FIFO. The number of elements in the FIFO can be set in Figure 61 by double-

clicking on the FIFO icon and changing its properties. The LabVIEW schematics of the

FPGA VI are shown in Figure 62.

A point to note is that the thermometer code displays were removed from the

Front Panel of the VI, as it slowed down the FPGA execution speed when it was required

to display any data.

 81

The truncated DR case was used for the RSNS-to-binary conversion for this

integration as the interferometers used in [5] could not create enough folds of the

modulated signals to exploit the whole DR.

Figure 62. LabVIEW Schematics of FPGA VI.

 82

2. Host Interface VI

In the Host VI, LabVIEW requires that a reference to the FPGA VI be opened

before the Host VI can communicate with the FPGA VI. Thereafter, a ‘FIFO Read’

action was invoked by the Host VI to read the DMA FIFO data in the FPGA VI. The data

was then saved in a text file, using the ‘Write to Measurement File’ VI. The LabVIEW

schematics of the Host VI are shown in Figure 63.

Figure 63. LabVIEW Schematics of Host VI.

3. Results

After compiling and running the FPGA and Host VIs, proper alignment of the

modulated signals had to be carried out to ensure that the RSNS vectors were lined up

correctly to achieve accurate decoding. The DDS outputs for a 1-kHz triangular and 1-

kHz sine input signal are shown in Figures 64 and 65, respectively.

 83

Figure 64. DDS Output for a 1-kHz Triangular Input Signal.

Figure 65. DDS Output for a 1-kHz Sine Input Signal.

 84

It is seen from Figures 64 and 65 that the DDS module was able to decode the

input signals with some signal clipping and uneven step sizes in the output waveforms.

Implementations of the comparator circuit and RSNS-to-binary conversion

algorithm on the FPGA to form the DDS module and DDS module integration with the

front-end PES module to form the overall folding ADC architecture were carried out in

this chapter. An analysis of the ADC performance characteristics is provided in the next

chapter.

 85

VII. ADC PERFORMANCE

In this chapter, a number of important parameters that describe an ADC’s

performance are presented. Differential and integral linearity errors are plotted for the

ADC to analyze the linearity errors. The ADC dynamic range is determined using a full-

scale sinusoid and a Fourier spectrum analysis of the noise floor. Finally, the ADC

dynamic performance is characterized by the Signal-to-Noise Ratio (SNR), SNR plus

distortion (SINAD), Total Harmonic Distortion (THD) and the Effective Number of Bits

(ENOB) parameters.

A. LINEARITY ERRORS

A comparison of the ADC 1-kHz sine input signal and the DDS output signal is

shown in Figure 66, where it can be seen that the DDS output signal is able to follow the

input signal, with some quantization and linearity errors.

Figure 66. Comparison of PES Input Signal and DDS Output Signal.

 86

The characteristic transfer function of a 1-kHz triangular waveform is used to

quantify the linearity errors. A plot of the ADC transfer function using a 1-kHz triangular

input signal is shown in Figure 67. The quantization errors of the ADC transfer function

in Figure 67 are shown in Figure 68. Quantization error is present as there is no one-to-

one correspondence between the input and output voltage.

Figure 67. Photonic ADC Transfer Function using a 1-kHz Triangular Input Signal.

Figure 68. Quantization Errors.

 87

1. ADC Resolution

The LSB size for this RSNS ADC is defined as:

ˆ
fs

RSNS

V
LSB

M


 (49)

where RSNSLSB is the ADC resolution, fsV is the full-scale voltage and M̂ is the

maximum system dynamic range.

2. Differential Non-Linearity

The Differential Non-Linearity (DNL) is expressed as [10]:

 1k k kDNL V V LSB   (50)

where 1 and k kV V  are two consecutive code transition points, and  1k kV V  is the step-

size. The DNL is the maximum deviation in the output step-size from the ideal value of

one LSB.

3. Integral Non-Linearity

The Integral Non-Linearity (INL) is defined as [10]:

1

j

j k j
k

INL DNL V jLSB


   (51)

where  1
1

j

j k k
k

V V V 


  is the sum of the step-size from zero to the thj transition point,

and jLSB is the ideal value at that transition point. The INL is the maximum deviation of

the input/output characteristic from a straight line passed through its end points. A good

ADC typically has linearity error ≤ 0.5 LSB. [10]

The linearity errors (step-size, DNL and INL) of the quantized signal in Figure 67

are shown in Figure 69. The step-size plot depicts the length of input voltage

 88

corresponding to each quantization level as the input voltage increases. It shows that the

maximum step-size is 2.7 LSB, which corresponds to the code transition points with a

maximum DNL value of 1.7 LSB.

A maximum INL value of 7.8 LSB is also obtained in Figure 69. The INL

increases with a larger input voltage, indicating that the slope of the ADC transfer

function is deviating from that of an ideal ADC transfer function at larger input voltages.

Figure 69. Linearity Parameters – Step-Size, DNL and INL.

 89

B. NOISE FLOOR ANALYSIS

The process for computing the frequency spectrum and analyzing the ADC noise

floor is illustrated in Figure 70.

Figure 70. Process for Examining ADC Noise Floor (From [10]).

This process involves passing a sinusoid input signal through the ADC. During

quantization, a white noise process (quantization noise) k is added to the analog signal.

The ADC noise floor is analyzed by windowing 20 sets of 4,096 digitized samples using

a Blackman-Harris window, with the window samples represented by kw . The

Blackman-Harris window is chosen because of the low side-lobe levels it can achieve

[10].

The average magnitude spectrum response is obtained by using the Discrete

Fourier Transform (DFT) to transform the time-domain signals into the frequency

domain and performing asynchronous point-by-point spectral averaging of the 20 sets of

data.

The purpose of conducting this noise floor analysis is to determine the dominant

noise sources in the ADC system, explained in the next two sections.

1. Quantization Noise

The theoretical noise floor can be evaluated by examining the SNR and

considering the presence of quantization noise only. By normalizing the square of the

 90

magnitude of the spectral average with the fundamental signal, the equation to calculate

the noise floor using a Blackman-Harris window is [10]:

 2 10

3
10log 6.02 dB

4M
B

M
F n

E

 
  

 

(52)

where n = Number of ADC Bits = log2 M̂ = log2 (41) = 5.26 bits, EB = Equivalent Noise

Bandwidth of Blackman-Harris Window = 2.0, and M = Number of Samples = 4096.

The theoretical noise floor is calculated as 2 64.13 dBMF   using (52). The procedure in

Figure 70 is then used to obtain actual ADC noise floor measurements for comparison.

 For this analysis, a 1-kHz sinusoidal signal was sampled at 100-kHz. Twenty sets

of 4,096 digitized signals were acquired asynchronously and windowed using a

Blackman-Harris window. The MATLAB Fast Fourier Transform (FFT) function was

used to compute the signal spectrum. The point-by-point spectral average of the twenty

sets of data was then calculated.

The spectral average of the 1-kHz sinusoidal signal is shown in Figure 71, using a

Blackman-Harris window.

Figure 71. Spectral Average of a 1-kHz Sinusoidal Signal.

 91

 Since the noise floor in Figure 71 is –64.5 dB, which is close to the theoretical

noise floor of –64.13 dB, other additive noise sources (such as thermal noise) are less

dominant in the system compared to quantization noise.

2. Clock Jitter

Two frequencies can be used to test if clock jitter is a dominant noise source, with

the higher frequency being twice that of the first frequency [10]. A 2-kHz sinusoidal

signal was sampled to compare its noise floor with that obtained for the 1-kHz sinusoidal

signal in Figure 71. The same process in Figure 70 was adhered to in calculating the

magnitude square spectrum of both signals.

The spectral average of the 2-kHz sinusoidal signal with a noise floor of –59.5

dB, using a Blackman-Harris window, is shown in Figure 72. Since the difference

between both noise floor levels is 5 dB (less than 6 dB), clock jitter is not the dominant

noise source [10]. This is expected as clock jitter is not expected to be significant at these

relatively low frequencies.

Figure 72. Spectral Average of a 2-kHz Sinusoidal Signal.

 92

C. DYNAMIC PERFORMANCE ANALYSIS

Lastly, the ADC performance is characterized using the following dynamic

performance parameters: SNR, THD, SINAD and ENOB. Two different frequencies (1-

kHz and 2-kHz) were used for comparison.

1. Signal-to-Noise Ratio

The ideal SNR equation assumes only quantization noise and is expressed as [10]:

 () 6.02 1.76SNR dB n 

 (53)

2 2
ˆwhere Number of ADC Bits log log (41) 5.36 bits.n M   

2. Total Harmonic Distortion

 The THD measures the harmonics of the input signal that show up at integral

multiples of the fundamental frequency, and is a measure of the ADC’s non-linearity. It is

defined as [10]:

    2 2
2 20 3 20() 20log 10 10 ...

nd rdHAR HARTHD dB   (54)

For the purpose of this analysis, the input signal’s first five harmonics were measured in

decibels and used in (54).

3. SNR Plus Distortion

The SINAD equation takes into account all of the noise (including harmonics) to

give an indication of the useful ADC dynamic range, but excludes the DC component. It

is expressed as [10]:

 () 10 10() 20log 10 10 .SNR THDSINAD dB     (55)

4. Effective Number of Bits

The ENOB is a measure of the usable ADC dynamic range, which is reduced due

to noise. It is defined as [10]:

 93

full scale amplitude
1.76 20log

actual input amplitude
.

6.02

SINAD

ENOB

 
   

  (56)

5. Summary of ADC Dynamic Performance Parameters

A summary of the calculated parameter values, using (53) to (56) is shown in

Table 7.

Table 7. ADC Dynamic Performance Parameters.

Frequency Ideal SNR (dB) SINAD (dB) THD (dB) ENOB (Bits)

1 kHz 34.22 34.21 –61.68 5.39

2 kHz 34.22 34.21 –61.01 5.39

From Table 7, it is observed that the THD for the 2-kHz signal is 0.67 dB higher

than that for the 1-kHz signal. The SINAD and ENOB values are similar for both

frequencies, indicating that there was insignificant signal distortion when the frequency is

increased from 1-kHz to 2-kHz.

An enabler to achieving this is the design of comparator circuits in the FPGA,

which has significantly reduced the distortion caused by sampling errors, as compared to

using actual comparator ICs.

D. SUMMARY

 In this chapter, the ADC performance was described in three ways. First, the

ADC transfer function was examined for linearity errors. Second, the noise floor was

analyzed to determine the main sources of noise in the system. Lastly, the dynamic

performance parameters of the ADC system were characterized. Key conclusions and

recommendations for future research will be provided in the next chapter.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

VIII. CONCLUSION

The key conclusions obtained from this project and recommendations for future

research are provided in this chapter.

A. KEY CONCLUSIONS

The goal of this thesis was to conduct hardware and software implementation of

the DDS module of the folding ADC architecture (for Moduli 7, 8, 9) from the bank of

comparators to the RSNS-to-binary conversion within the FPGA as well as integration

with the front-end PES module of this ADC design. This was accomplished via several

milestones described below.

Firstly, the RSNS dynamic range computation algorithm in [6] and [7] was

verified to be correct, proving that an eight-bit DR of 133 can be achieved theoretically

for a three-channel RSNS ADC with Moduli m1 = 7, m2 = 8 and m3 = 9.

Secondly, the RSNS-to-binary algorithm was implemented in LabVIEW and

shown to achieve the DR value of 133, which is in agreement with [6] and [7], and a one-

bit improvement over that achieved in [4]. Design of thermometer code generator circuits

and simulation of this algorithm were carried out to verify that it is working properly

before connecting to actual signals.

Thirdly, the comparator circuits and RSNS-to-binary conversion algorithm were

implemented on the FPGA, allowing the ADC to achieve a higher sampling frequency.

Lastly, the DDS module was integrated with the front-end PES module in [5] to

form a folding ADC system and characterization of the ADC performance was carried

out. Analysis of the results attributed the dominant noise source in the ADC system to

quantization noise, with the ADC remaining resilient to errors caused by other additive

noise sources and comparator sampling.

 96

This electro-optic RSNS ADC system has been demonstrated to work and

produces a seven-bit output with relatively simple hardware and software. Due to the

reduced number of hardware and software components and the large bandwidth of the

photonics components, the energy and size savings, as well as increase in speed, make

this folding ADC design appealing for defense applications, such as unmanned systems,

direction-finding antenna architectures and electronic warfare system-on-a-chip

applications.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

 While this thesis is concerned with optimizing the DDS module implementation

of the folding ADC system, various system trade-offs had to be made for integration

purposes. Further upgrades and research can be carried out in various aspects of the

system, detailed below.

1. Bandwidth Upgrade

 The bandwidth of this ADC system is currently limited by the NI-9215 Analog

Input Module’s data rate of 100 kS/s. The highest frequency it can sample is 50 kHz,

based on the Nyquist criteria. There are several wider-bandwidth NI modules available to

replace this, such as the NI-5761 Digitizer Adapter Module, which has a data rate of 250

MS/s and can sample frequencies up to 125 MHz [11]. The only drawback is that choices

of wide-bandwidth modules are limited due to lack of commercial development and

require impedance-matching for maximum power transfer.

2. FPGA Upgrade

The speed of this ADC system is currently limited by the XILINX Virtex-5 LX-

30 FPGA on the NI-9111 Chassis. There are several higher-capacity NI FPGA modules

available to replace this, such as the FlexRIO PXIe-7965R module, which has a XILINX

Virtex-5 SX-95T FPGA with a clock speed of 550 MHz and the ability to handle single-

ended Input/Output (I/O) up to 800 Mbps [12]. This module did not arrive in time for the

project due to procurement delay, but can be easily substituted when it is available.

 97

There are other high-speed FPGAs (up to 1 GHz) that could not be used as they

do not interface with NI LabVIEW. Nevertheless, it is envisaged that an Application-

Specific Integrated Circuit (ASIC) can be developed for testing once the FPGA circuit

design has been fixed. This will remove the constraint of having to rely only on the NI

programming environment.

The envisaged DDS setup, after incorporating the component upgrades, is

illustrated in Figure 73.

Figure 73. Upgrades to DDS Setup.

3. Higher-Moduli Configurations

The modular structure of the RSNS-to-binary converter allows the ADC system to

be easily scalable to higher-moduli configurations or configurations with more than three

channels. This will increase the ADC resolution and enable the ADC system to achieve a

dynamic range that is better than the current eight-bit DR of 133.

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

APPENDIX. GENERALIZED CHINESE REMAINDER
THEOREM PROCEDURE TO SOLVE FOR COA SHIFTS

The COA shift 1sh is the least positive solution to the following sets of

congruence equations:

1
1

1
1

1
1

1
0 (mod 7) 1 (mod 21)

3
1

0 (mod 8) 1 (mod 24)
3

2
0 (mod 9) 2 (mod 27)

3

s
s

s
s

s
s

h
h

h
h

h
h


  


  


   

(57)

 Equation (57) cannot be solved directly using the standardized Chinese

Remainder Theorem (CRT) as the three moduli are not Pair-Wise Relatively Prime

(PRP). The generalized CRT procedure must be used. The first step is to break each

equation into its constituent equations [10]:

1
1

1

1
1

1

1

1 1

1

1 (mod 7)
 1 (mod 21)

1 (mod 3)

1 (mod 8)
 1 (mod 24)

1 (mod 3)

2 (mod 3)

2 (mod 27) 2 (mod 3)

2 (mod 3)

s
s

s

s
s

s

s

s s

s

h
h

h

h
h

h

h

h h

h


  


  

 
   
  

(58)

 The second step is to group all constituent equations with the same moduli

together, and solve for the remaining congruence equations using the standardized CRT

method:

1

1

1

1 (mod 7)

1 (mod 8)

2 (mod 3)

s

s

s

h

h

h



 

(59)

 100

 The standardized CRT solution is:

   
   

   

1
1

1 2 3

1 2 3

where 7 8 3 168

 Moduli 7 8 3

 Residue of Moduli 1 1 2

N

s i i
i i

i

i

i

M
h b a

m

M m

m i m m m

a i a a a





  

  

   





(60)

 The coefficients bi can be found via the following procedure:

 

   

    

1 1
1

168
Find : , ,7 24,7

7

 24 1 7 0 24

24
 24 0 7 1 7

7

M
b m

m

       
  

 

    

           

           

 

1

2 2
2

3

24 24 7
24 1 0 7 0 1 24 1 7 3 3 2

7 7 3

7 7
24 0 1 7 1 3 24 2 7 7 1 2

3 3

168
Find : , ,8 21,8

8

b

M
b m

m



                                           
                                        

       
  

   

    

       

 21 1 8 0 21

21
 21 0 8 1 8 2

8

21 21
21 1 0 8 0 1

8 8

 

     

            
   

           

           

8
21 1 8 2 5 1

5

8 8 5
21 0 1 8 1 2 21 1 8 3 3 1

5 5 3

5 5 3
21 1 1 8 2 3 21 2 8 5 2

3 3

                     
                                            
                                       

            2

1
2

3 3
21 1 2 8 3 5 21 3 8 8 1 3

2 2
b

    

                                         

 101

 

   

    

3 3
3

168
Find : , ,3 56,3

3

 56 1 3 0 56

56
 56 0 3 1 3

3

M
b m

m

       
  

 

    

           

            3

1 1 1 2 2 3 3
1 2 3

18

56 56 3
56 1 0 3 0 1 56 1 3 18 2 1

3 3 2

3 3
56 0 1 3 1 18 56 1 3 19 1 1

2 2

mods

b

M M M
h b a b a b a

m m m



                                           
                                        

 
   
 

 

            1 24 2 1 21 3 1 56 1 2 mod 168 1 mod 168s

M

h          

Similarly, the COA shift 2sh is the least positive solution to the following sets of

congruence equations:

2
2

2
2

2
2

2
0 (mod 7) 2 (mod 21)

3
1

0 (mod 8) 1 (mod 24)
3

1
0 (mod 9) 1 (mod 27)

3

s
s

s
s

s
s

h
h

h
h

h
h


  


   


   

(61)

 Equation (61) cannot be solved directly using the standardized CRT as the three

moduli are not PRP. The generalized CRT procedure must be used. Again, the first step is

to break each equation into its constituent equations [10]:

 102

2
2

2

2
2

2

2

2 2

2

2 (mod 7)
 2 (mod 21)

2 (mod 3)

1 (mod 8)
1 (mod 24)

1 (mod 3)

1 (mod 3)

1 (mod 27) 1 (mod 3)

1 (mod 3)

s
s

s

s
s

s

s

s s

s

h
h

h

h
h

h

h

h h

h


  

 
    

 
   
  

(62)

 The second step is to group all constituent equations with the same moduli

together and solve for the remaining congruence equations using the standardized CRT

method:

2

2

2

2 (mod 7)

1 (mod 8)

1 (mod 3)

s

s

s

h

h

h


 
 

(63)

 The standardized CRT solution is:

   
   

   

2
1

1 2 3

1 2 3

where 7 8 3 168

 Moduli 7 8 3

 Residue of Moduli 2 1 1

N

s i i
i i

i

i

i

M
h b a

m

M m

m i m m m

a i a a a





  

  

    





(64)

 The coefficients bi are the same as for 1sh , as the moduli configuration is the same

for both COA shifts:

 

            

2 1 1 2 2 3 3
1 2 3

2

mod

24 2 2 21 3 1 56 1 1 mod 168 23 mod 168

s

s

M M M
h b a b a b a M

m m m

h

 
   
 

           

(65)

 103

LIST OF REFERENCES

[1] P. E. Pace, D. Styer and I. A. Akin, “A folding ADC preprocessing architecture
employing a robust symmetrical number system with gray-code properties,” IEEE
Transactions on Circuits and Systems-II: Analog and Digital Signal Processing,
vol. 47, pp. 462–467, May 2000.

[2] B. L. Luke, “Architecture of an integrated microelectronic warfare system on a
chip and design of key components,” PhD dissertation, Naval Postgraduate
School, Monterey, California, December 2004.

[3] M. R. Arvizo, “Electro-optic analog-to-digital converter (ADC) architecture based

on the robust symmetrical number system (RSNS),” M.S. thesis, Naval
Postgraduate School, Monterey, California, September 2009.

[4] R. A. Monta, “Symmetrical residue-to-binary conversion algorithm, pipelined
FPGA implementation, and testing logic for use in high-speed folding digitizers,”
M.S. thesis, Naval Postgraduate School, Monterey, California, December 2005.

[5] K. L. Tong, “Photonic analog-to-digital converters preprocessing using the robust
symmetrical number system antenna signals,” M.S. thesis, Naval Postgraduate
School, Monterey, California, December 2010.

[6] B. L. Luke and P. E. Pace, “N-Sequence RSNS ambiguity analysis,” IEEE

Transactions on Information Theory, vol. 53, pp. 1759–1766, May 2007.

[7] B. L. Luke and P. E. Pace, “Computation of the Robust Symmetrical Number
System Dynamic Range,” IEEE Information Theory Workshop (ITW 2010),
Dublin, Ireland, September 2010.

[8] D. Styer and P. E. Pace, “Two-channel RSNS dynamic range,” IEEE

Transactions on Circuits and Systems-I: Fundamental Theory and Applications,
vol. 49, pp. 395–397, March 2002.

[9] B. L. Luke and P. E. Pace, “RSNS-to-binary conversion,” IEEE Transactions on
Circuits and Systems-I: Fundamental Theory and Applications, vol. 54, pp. 2030–
2043, September 2007.

[10] Pace, P. E., Advanced Techniques for Digital Receivers. Norwood, MA: Artech
House, 2000.

[11] National Instruments: “14-bit, 250MS/s Adapter Module for NI FlexRIO Data
Sheet,” July 2010. [Available online at http://sine.ni.com/ds/app/doc/p/id/ds-
236/lang/en, accessed 27 Oct 2010].

 104

[12] National Instruments: “NI FlexRIO FPGA Modules,” July 2010. [Available
online at http://www.ni.com/pdf/products/us/cat_flexriofpga.pdf, accessed 27 Oct
2010].

 105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Chairman, Code ECE

Naval Postgraduate School
Monterey, California

4. Professor Phillip Pace

Naval Postgraduate School
Monterey, California

5. Professor David Jenn
 Naval Postgraduate School

Monterey, California

6. Dr. James Calusdian

Naval Postgraduate School
Monterey, California

7. Professor Tat Soon Yeo
 Temasek Defence Systems Institute

Singapore

8. Miss Lai Poh Tan
 Temasek Defence Systems Institute

Singapore

